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Waterborne infectious diseases are a major public health concern worldwide. Few 
methods have been established that are capable of measuring human exposure to 
multiple waterborne pathogens simultaneously using non-invasive samples such as 
saliva. Most current methods measure exposure to only one pathogen at a time, require 
large volumes of individual samples collected using invasive procedures, and are very 
labor intensive. In this article, we applied a multiplex bead-based immunoassay capable 
of measuring IgG antibody responses to six waterborne pathogens simultaneously 
in human saliva to estimate immunoprevalence in beachgoers at Boquerón Beach, 
Puerto Rico. Further, we present approaches for determining cutoff points to assess 
immunoprevalence to the pathogens in the assay. For the six pathogens studied, our 
results show that IgG antibodies against antigens from noroviruses GI.I and GII.4 were 
more prevalent (60 and 51.6%, respectively) than Helicobacter pylori (21.4%), hepatitis 
A virus (20.2%), Campylobacter jejuni (8.7%), and Toxoplasma gondii (8%) in the saliva 
of the study participants. The salivary antibody multiplex immunoassay can be used to 
examine immunoprevalence of specific pathogens in human populations.

Keywords: multiplex, immunoassay, salivary antibody, saliva, exposure, bead-based, immunoprevalence, 
coimmunopositivity

inTrODUcTiOn

Acute gastrointestinal illness (AGI) has long been associated with swimming in fecally contaminated 
waters (1–12). Epidemiological surveys and enzyme-linked immunosorbent assays are often used 
to ascertain the cause of these illnesses. These approaches are time consuming, costly, and suffer 
from challenges such as selection bias and patient recollection of symptoms (13, 14). Further, AGIs 
may be caused by many different pathogens, including a number of viruses, bacteria, and protozoa.
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TaBle 1 | antigens, sources, and coupling concentrations used in the 
multiplex immunoassay.

Organism antigen source amt. of ag 
coupled (μg)

Campylobacter jejuni Heat-killed whole bacterial cells KPL 50
Helicobacter pylori Bacterial cell lysate Meridian 25
Toxoplasma gondii Recombinant p30 (SAG1) Meridian 25
Hepatitis A virus Cell culture concentrate Meridian 100
Norovirus GI.1 P-particle Xi Jianga 5
Norovirus GII.4 P-particle Xi Jianga 5

aCincinnati Children’s Hospital Medical Center.
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Multiplexed immunoassays have been primarily used to assess 
antibodies in serum; however, oral fluid represents a promising 
alternative to serum in studies to determine the presence and 
incidence of certain infections (15–26). Saliva is simple and safe 
to collect, well tolerated by children, non-invasive, inexpensive 
compared to serum, and importantly can usually be self-collected. 
Antibodies in saliva have been detected against bacteria (27–32), 
protozoa (33–36), and viruses (20, 37–44). The combination of 
saliva samples and a multiplex assay provides a powerful tool that 
could enhance health outcome assessment and measurement for 
certain types of epidemiological studies (17, 19, 35, 45, 46).

Several potentially waterborne pathogens, including Campy­
lobacter jejuni, Helicobacter pylori, Toxoplasma gondii, hepatitis  
A virus (HAV), and noroviruses, were selected for this study  
based on their relative importance for public health and avail-
ability of immunogenic proteins. These organisms may have 
multiple routes of transmission, but all have been implicated as 
possible sources of waterborne disease. Specifically, C. jejuni is 
a common cause of acute bacterial gastrointestinal illness, often 
associated with foodborne disease, primarily from poultry and 
raw milk (47). However, outbreaks of campylobacteriosis due 
to contamination of drinking (47–49) and recreational (50, 51) 
waters have been reported. H. pylori is a bacterium uniquely 
adapted to chronically colonize the human stomach, which 
causes transient acute dyspeptic symptoms following initial 
colonization (52), but chronic infection can cause chronic 
gastritis, gastric or duodenal ulcers, and gastric cancer (53). 
Although most H. pylori infections are believed to be acquired 
via person-to-person transmission, waterborne transmission 
is also possible (54) due to the ability of Helicobacter to con-
taminate water supplies (55) and survive in distribution system 
biofilms (56). T. gondii is a parasite of felines, which also infects 
a wide variety of intermediate hosts, including livestock and 
humans (57). Infections are benign in most immunocompetent 
individuals (57), but Toxoplasma infection in a previously 
uninfected pregnant woman can cause miscarriage or neu-
rological damage to the fetus (58). The predominant route of 
toxoplasmosis infection in humans is ingestion of undercooked 
meat; however, disinfection-resistant oocysts excreted by cats 
can also cause waterborne outbreaks (59–61). Furthermore, 
epidemiological associations have been reported between well 
water use and T. gondii antibody prevalence (62–64). HAV is 
an RNA virus that causes a highly contagious liver infection. It 
is typically transmitted by the fecal–oral route, either through 
consumption of contaminated food or water or via person-to-
person contact (65). It was previously demonstrated that areas 
with inadequate water supply and poor wastewater facilities and 
hygienic conditions generally have high HAV prevalence (65, 
66). HAV outbreaks have also been associated with drinking 
(67) and recreational water exposures (68). Finally, noroviruses 
are a diverse group of RNA viruses, which are a major cause 
of acute gastroenteritis worldwide. Transmission of noroviruses 
may occur via ingestion of contaminated food or water, expo-
sure to contaminated fomites, and person-to-person contact. 
Noroviruses can contaminate surface waters (69) and cause 
outbreaks associated with chlorinated water supplies (70, 71) 
and untreated ground water (67, 72). Outbreaks have also been 

associated with recreational swimming exposures in lakes (50, 
73, 74).

To study human exposure to these potentially waterborne 
pathogens, we previously developed a Luminex xMAP™ bead-
based, salivary IgG antibody multiplex immunoassay to measure 
antibodies to C. jejuni, H. pylori, T. gondii, HAV, and noroviruses 
GI.1 and GII.4 (14, 19). Assay parameters such as antigen concen-
tration and coupling, cross-reactivity, sensitivity, and specificity, 
as well as anti-human detection antibody and reporter concentra-
tions, were optimized and tested using both characterized human 
plasma and saliva samples (14, 19).

Here, we used our optimized multiplex immunoassay (14) 
consisting of recombinant proteins, whole cells, and cell lysates 
to MicroPlex™ beads to indirectly capture human antibodies in 
saliva samples collected from visitors to Boquerón Beach, Puerto 
Rico. Methods were presented to examine potential patterns and 
estimate exposure in the population. The approaches described 
here allowed us to determine the prevalence of waterborne infec-
tions by using IgG antibodies as biomarkers of exposure in non-
invasively collected human saliva samples. The goal of this study 
was to describe the method and overall prevalence of exposure. 
Subsequent manuscripts will address exposure routes and rates of 
new infections (immunoconversions).

MaTerials anD MeThODs

reagents
Bead sets were obtained from Luminex Corp. (Austin, TX, USA) 
at a concentration of 12.5  ×  106 beads/ml each. Biotin-labeled 
affinity purified goat anti-human IgG (λ) secondary detection 
antibody was obtained from KPL (Gaithersburg, MD, USA). 
Antigens were purchased (as shown in Table 1) and coupled to the 
beads in accordance with the optimized multiplex immunoassay 
presented in the study by Augustine et  al. (14). The optimized 
conditions were applied to the antigens multiplexed in this study.

antigen coupling and confirmation Using 
animal-Derived antibodies
The Luminex beads were activated and coupled, as previously 
described (14, 16, 19). Coupling confirmation was performed 
using serial dilutions of commercially available, animal-derived 
primary capture antibodies specific to each antigen to ensure 
that the beads were sufficiently coupled and that the dynamic 
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range of the assay could be defined (14). Briefly, a working bead 
mixture was prepared by diluting the coupled bead stocks to a 
final concentration of 100  beads/μl of each unique bead set in 
phosphate-buffered saline containing 1% bovine serum albumin 
(PBS-1% BSA). Twofold serial dilutions of anti-species IgG 
primary antibody were prepared per the manufacturer’s recom-
mendations. Then 5 × 103 beads from each bead set were added to 
each well of a prewet filter plate. An equal volume of the serially 
diluted species-specific antibody was added to the beads, mixed 
gently, covered, and allowed to incubate in the dark at room tem-
perature for 30 min at 500 rpm on a VWR™ microplate shaker 
(Radnor, PA, USA).

The supernatant was removed by vacuum, the wells were 
washed twice with 100 µl of PBS pH 7.4 containing 0.05% Tween 
20 (PBS-T) (Sigma, St. Louis, MO, USA), and excess buffer was 
removed by vacuum. The beads were gently resuspended in 
PBS-1% BSA buffer, and 0.8 µg of biotinylated anti-species IgG 
secondary detection antibody was added to each well. The filter 
plates were covered and allowed to incubate in the dark at room 
temperature for 30 min on a plate shaker. After incubation, the 
wells were washed twice with 100 µl of PBS-T, and excess buffer 
was removed as mentioned earlier. Finally, 1.2 µg of streptavidin-
R-phycoerythrin was added to each well, mixed gently, incubated 
for 30 min, and washed twice as mentioned earlier. Excess buffer 
was removed by vacuum, the beads were resuspended in 100 µl 
of PBS-1% BSA, and the plate was analyzed on a Luminex 100 
analyzer (Luminex Corporation, Austin, TX, USA).

saliva collection, Processing,  
and analysis
Approval was obtained from the institutional review board 
(# 08-1844, University of North Carolina, Chapel Hill, NC, 
USA) for the collection of saliva samples from beachgoers at 
Boquerón Beach, Puerto Rico, as a part of the USEPA National 
Epidemiological and Environmental Assessment of Recreational 
Water Study (75). Households were offered enrollment on a 
first-come, first-served basis each day until a goal of 100 was 
reached. Study subjects (n = 2,091) provided informed consent 
and were instructed on the use of the Oracol™ saliva collection 
device (Malvern Medical Developments, Worcester, UK). Briefly, 
the Oracol™ sampler was rubbed against the gingival crevices of 
the oral mucosa (between the gums and teeth) to absorb saliva. 
Infants younger than 1 year were not included due to the possible 
presence of maternal antibodies and high rates of non-waterborne 
infections. Individuals who reported dental or other illnesses at 
the time of the initial collection were also excluded.

The baseline samples were collected on the beach by trained 
study staff members. Upon receipt, samples were cataloged 
using FreezerWorks™ software (Dataworks Development, Inc., 
Mountlake Terrace, WA, USA) and stored at −80°C until tested. 
Oracol™ saliva collection devices were thawed at room tempera-
ture and centrifuged at 491 × g, 10°C, for 5 min to recover the 
saliva off the collection sponge, followed by another centrifugation 
at 1,363 × g, 10°C, for an additional 5 min to pellet debris from 
the saliva. After centrifugation, the saliva was aspirated from the 
tubes and transferred to 1.5-ml microcentrifuge tubes. The saliva 
containing tubes were centrifuged at 1,500  ×  g for 3  min, and 

the supernatant was transferred to a clean 1.5-ml microcentrifuge 
tube and either used immediately for analysis or stored at −80°C.

Before analysis, samples were diluted 1:4 in PBS-1% BSA in 
a 96-well round bottom plate (Corning™, Corning, NY, USA) 
and gently mixed. MultiScreen BV 96-well filter plates (Millipore, 
Billerica, MA, USA) were prewetted with 100 µl of PBS-1% BSA 
buffer, and excess buffer was removed by vacuum. Then 5 × 103 
beads from each bead set and an equal volume of diluted saliva 
were loaded onto each well of the filter plates resulting in a final 
dilution of 1:8 for a total volume of 100 µl per well. The loaded 
filter plates were processed, as previously described (16, 19), 
and reporter fluorescence was measured using a Luminex 100 
analyzer and expressed as median fluorescence intensity (MFI) 
of at least 100 beads per bead set.

assay controls, cross-reactivity, and 
signal-to-noise ratio (snr)
One set of Luminex beads was used as a no-antigen (uncoupled) 
control to assess the extent of non-specific binding and sample-
to-sample variability. These beads were treated identically to 
antigen-conjugated beads with the exception that control beads 
were not incubated with any antigen during the coupling step. As 
with the antigen-coupled beads, the control beads were blocked 
with BSA, a protein that is a key reagent in the buffers used to 
perform the assay.

Of the 2,091 saliva samples obtained from study participants, 
13 samples were observed to react with the control beads. These 
samples, likely outliers in the 99th percentile of the control beads, 
were subsequently removed from analyses due to the potential for 
contamination of the saliva by serum from bleeding gums. The 
remaining samples (n = 2,078) were used in the assessment. Cutoff 
points for immunopositivity were derived from the MFI values 
of these uncoupled beads (control). In addition, background 
fluorescence and cross-reactivity of antigen-coupled beads to 
secondary detection antibodies and/or reporter were evaluated 
by adding PBS-1% BSA buffer to control wells instead of saliva. 
The MFI values from the background controls (antigen-coupled 
beads with PBS-1% BSA) were subtracted from the MFI obtained 
from every antigen-coupled bead set for each saliva sample.

Additional tests of cross-reactivity were performed with  
animal-derived primary detection antibodies, including mono-
plex (one antigen-coupled bead set with its specific primary anti-
body and controls), duplex (two antigen-coupled bead sets and 
one primary antibody and controls), and multiplex (six antigen-
coupled bead sets and uncoupled control beads with one primary 
antibody). Bead coupling and confirmation, cross-reactivity, and 
method validation using characterized plasma samples were 
performed, as previously described (14).

As a surrogate measure of assay sensitivity, a SNR was calcu-
lated by dividing the MFI of the specific antigen signals by the 
MFI of the uncoupled control beads for each sample (14, 76). We 
computed a SNR for each reading as a ratio of the MFI value for 
sample i when tested for antibodies to antigen j(Rij) and the MFI 
value of the uncoupled control for the sample (Ci):

 
SNRij

ij

i

R
C

= .
 

(1)
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FigUre 1 | Median fluorescence intensity (MFi) profile of study participants. (a) Heat map visualization of study participants’ antibody profiles to six 
waterborne pathogens provides insight on possible exposure patterns. Each row presents the MFI values of the target pathogens for the individual saliva sample 
collected from beachgoers. (B) Histograms showing the non-normal distribution of target pathogen MFIs for the study participants.
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approaches to Determine Background 
cutoff Points to investigate antibody 
Prevalence
We explored two approaches to establish a means of estimating 
immunoprevalence to all targets in the Luminex multiplex assay 
in the absence of information regarding true infection status of the 
participants. To help determine immunoprevalence, researchers 
have used a variety of methods including three times the mean 
(77) and mean plus 3 times the standard deviation (SD) of the 
control beads (16, 78). Cutoff point criteria 1 (CC1) is defined as 
the mean plus 3 SDs (μ + 3σ) of the control beads. As a basic test 
for normality, histograms were generated, which reflected posi-
tive skewness in the salivary antibody responses observed in this 
study population. Cutoff point criteria 2 (CC2) was established 
to account for this non-normality and is defined as the antilog of 
the mean plus 3 SDs of the log10-transformed data [10mean(h)+3SD(h), 
where h = log10(control MFI)]. All data analysis was performed 
using Microsoft Excel 2013 and MATLAB Release 2016a.

resUlTs

study Population
Since we were interested in only assessing the immuno-
prevalence for the antigens in the multiplex for this study, 
IgG levels against the six antigens in the Luminex multiplex 
immunoassay were measured in baseline saliva samples collected 

from 2,078 consenting individuals at Boquerón Beach, Puerto  
Rico.

summary of antibody Data analysis
Figures 1 and 2 summarize the study participants’ antibody pro-
files to the six waterborne pathogens. In Figure 1A, each row of  
the heat map represents the MFI values of the target pathogens 
for an individual saliva sample and provides insight on poten-
tial exposure patterns. The MFI values for each target is right 
skewed, reflecting a non-normal distribution (Shapiro–Wilk test 
p-values <0.05) (Figure 1B). Figure 2A shows that each antigen 
is characterized by a broad range of MFI values showing noro-
viruses with the largest median MFIs. The maximum SNRs for 
each individual antigen in the multiplex assay ranged from 145:1  
(C. jejuni) to 9,004:1 for norovirus GI.1 (Figure 2B). Here, we 
define immunoprevalence as a baseline sample (n  =  2,078) 
with a MFI reading greater than or equal to the cutoff point 
established.

establishing cutoff Points and assessing 
immunoprevalence
Table  2 provides the cutoff points and immunoprevalence 
results for CC1 (87.6%) and CC2 (67.7%), and Figure 3 shows 
the corresponding visualization. Table 3 (upper panel) provides 
a breakdown of the immunoprevalence to specific pathogens 
with evidence of the greatest amount of exposure to noroviruses 
GI.1 (48.6–71.2%) and GII.4 (37.6–65.7%) followed by H. pylori 
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FigUre 2 | Distribution of median fluorescence intensity (MFi) results. (a) Boxplot of MFI results in log scale. The whiskers represent the minimum  
and maximum values. (B) Maximum signal-to-noise ratio (SNR) for each antigen in the multiplex immunoassay.

TaBle 2 | Methods for determining cutoff points to estimate 
immunoprevalence in saliva samples.

cutoff point criteria cutoff point # (%)

Cutoff point criteria 1 (CC1) Mean + 3 SD 150 1,821 (87.6)
Cutoff point criteria 2 (CC2) 10mean(h)+3SD(h) 505 1,406 (67.7)

CC1: mean plus 3 SDs [CC1 = 150 median fluorescence intensity (MFI)] and CC2: 
10mean(h)+3SD(h) (CC2 = 505 MFI). h = log10(MFI of control beads).
# (%) represents the number (percentage) of immunopositive samples based on the 
cutoff used.
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used to calculate coimmunopositivity and assess correlation for 
all the multiplexed antigens in the immunoassay. Table 4 shows 
the numbers and percentages of pairwise analyses of the multi-
plexed antigens using both the less stringent cutoff point criteria 
(CC1, upper panel) and a more conservative cutoff point criteria 
(CC2, lower panel). The Spearman rank-order correlation coef-
ficient (rho) assessing the linear relationship between the MFI 
of the antigens in the multiplex ranged from 0.20 for H. pylori/
norovirus GII.4 to 0.55 for C. jejuni/H. pylori (p-value  <  0.05 
for each pairing), indicating a statistically significant, weak to 
moderate positive correlation.

DiscUssiOn

This is the first multiplex immunoassay study aimed at describing 
the immunoprevalence of circulating antibodies to six water-
borne pathogens in beachgoers in Puerto Rico. The identification 
of waterborne pathogen immunoprevalence is a necessary and 
highly important first step in assessing and managing recreational 
water-associated AGI risks. Analysis of the initial saliva samples 
for antibodies to these six pathogens revealed that more than 

(14–28.7%), HAV (16.2–24.3%), T. gondii (2–14%), and C. jejuni 
(2.3–15.2%).

Defining and Measuring 
coimmunopositivity
Based on our cutoff points, 1,386 (CC1) and 768 (CC2) samples 
showed salivary antibody responses to multiple (N) antigens 
(Table 3, lower panel). This prompted us to investigate whether 
this was a result of cross-reactivity or true coimmunopositivity. 
The MFI values of the complete baseline data set (n = 2,078) were 
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FigUre 3 | Visualization of cutoff point ratios. The left panel shows the 
positive samples based on cutoff point criteria 1 (CC1) [150 median 
fluorescence intensity (MFI)], and the right panel indicates positive samples 
based on cutoff point criteria 2 (CC2) (505 MFI). Ratios over 1 (MFI ≥ cutoff 
point) are red in the plots. MFIs below cutoff point are white.

TaBle 3 | immunoprevalence rates to specific (upper panel) and multiple 
pathogens simultaneously (lower panel).

To specific pathogens, n (%)

Pathogens cutoff point criteria 1  
(cc1)

cutoff point criteria 2  
(cc2)

Campylobacter jejuni 315 (15.2) 47 (2.3)
Toxoplasma gondii 291 (14.0) 41 (2.0)
Helicobacter pylori 597 (28.7) 291 (14.0)
Hepatitis A virus 504 (24.3) 336 (16.2)
NoV GII.4 1,365 (65.7) 781 (37.6)
NoV GI.1 1,479 (71.2) 1,009 (48.6)

To N pathogens simultaneously, n (%)

N cc1 cc2

0 257 (12.4) 672 (32.3)
1 435 (20.9) 638 (30.7)
2 622 (29.9) 510 (24.5)
3 412 (19.8) 195 (9.4)
4 201 (9.7) 53 (2.6)
5 74 (3.6) 10 (0.5)
6 77 (3.7) 0 (0.0)

summary

cc1 cc2

None 257 (12.4) 672 (32.3)
Single (N = 1) 435 (20.9) 638 (30.7)
Multiple (N ≥ 2) 1,386 (66.7) 768 (37.0)
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two-thirds of the beachgoers were previously infected by at least 
one of the pathogens studied. On average, the results indicated 
that more than three-fifths of the beachgoers had evidence of 
prior exposure to noroviruses, while over a fifth were previously 
exposed to H. pylori and HAV. Antibodies against T. gondii and 
C. jejuni were less common. These results are relatively consistent 
with previously published data that show the prevalence of infec-
tions from noroviruses GII.4 and GI.1 at >80% worldwide (79). H. 
pylori prevalence in developed countries ranged from 30 to 40% 
and 80 to 90% in the developing world (80). The seroprevalence 
of HAV in the United States was reportedly 34.9% overall (81), 
while C. jejuni and T. gondii were 15–30% and 7–22.5% prevalent, 
respectively (63, 82, 83). Taken together, the initial sample results 
suggest that these individuals had a historical exposure to the 
pathogens being studied. Future studies will investigate immuno-
conversions related to swimming-associated exposures.

Of the beachgoers who were previously exposed, many 
(37–67%) were found to have evidence of detectable antibodies to 
two or more antigens from our samples. This finding is consistent 
with previous studies of AGI performed in multiplex (84–87). 
These observations demonstrate the potential for multiplex 
assays to identify multiple infections and may be applied either 
crosssectionally or longitudinally to provide insight into the 
epidemiology of these conditions, as well as understanding the 
role of potential risk factors.

Selection of the definition to determine the cutoff points and 
immunoprevalence may depend on the study question being 
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answered. For example, a less stringent criterion may be accept-
able for a simple screening of samples requiring further clinical 
diagnostic testing. However, for studies where the immunological 
status of the subjects is not known or the data are not normally 
distributed, as is the case here, the more stringent definition is 
strongly preferred to reduce false positives. Although the more 
conservative cutoff point may reduce false positives, it may have 
the opposite effect of increasing false negatives because we do not 
know the immunological status of the study participants.

In a previous study (14), we described the performance of 
the multiplex immunoassay to measure IgG antibodies using 
characterized human plasma samples against the antigens that we 
have used here. In that study, we described, in detail, the process 
used to address cross-reactivity using characterized (diagnosti-
cally positive and negative) plasma samples. Briefly, multiplexed 
antigens that showed cross-reactivity >10% to antigen-specific, 
animal-derived antibodies were removed from the immunoassay. 
A clear case of cross-reactivity was observed with the rabbit anti-
Giardia duodenalis antibody. That particular antibody bound to 
every antigen in the multiplex immunoassay at MFI levels that 
ranged from 59 to 180% (14) of the target antigen. Furthermore, 
we found the sensitivity of the assay to be ~92% based on the 
number of characterized samples that were correctly identified as 
being either positive or negative.

We have also reported on the development of multiplex 
immunoassays using saliva samples (16, 19). We observed 
that a 1:8 dilution of the saliva, together with the addition of 
0.05% Tween 20 to the wash buffer, resulted in decreased non-
specific binding. The optimal concentrations for each antigen 
used in the multiplex are shown in Table 1. Two approaches 
to determine cutoff points to define immunopositivity were 
considered for interpreting results of the multiplexed immu-
noassay to measure salivary IgG antibodies. The purpose was 

to examine the effects of the two options on the interpretation 
of the results and to make recommendations on which cutoff 
point might be the most appropriate for measuring immu-
noprevalence in a population. The cutoff point will also help 
inform which approach is most useful for the assessment of 
incident infections and health effects studies for waterborne 
infections.

We recognize that there are several limitations to our study. 
First, the possibility of promiscuous antibody binding with other 
antigens cannot be totally eliminated due to cross-reactivity 
(binding to similar or overlapping ligands) or multispecificity 
(binding of distinctly different ligands or different conformations 
of the same antibody) (88–91). The data presented in Tables 3 
and 4 provide some evidence that for each pair of antigens, there 
is a statistically significant weak to moderate positive correlation 
(p-value  <  0.05), suggesting either the possibility that these 
infections were occurring concomitantly as a feature of the study 
population or some level of cross-reactivity. The percentages of 
pairwise binding obtained using CC1 appear to show more coim-
munopositivity, but those numbers are drastically reduced when 
the more stringent CC2 is employed. We explored using PVX 
(polyvinylalcohol + polyvinylpyrrolidone + 0.05% Tween™ 20) 
buffer to reduce non-specific binding (92–94) and found that PVX 
buffer had a dramatic effect on reducing non-specific binding in 
plasma, which was not observed in saliva (data not shown). These 
results agree with observations made in a previous study (20).

Another limitation of the study is that antibody levels in saliva 
samples are typically lower than levels observed in sera or plasma. 
In this study, we found that the maximum SNR ranged from 145:1 
to 9004:1, indicating a wide dynamic range for antigens in the 
assay. Some individuals with low specific serum IgG will have even 
lower saliva IgG concentrations, and therefore, these individu-
als may not be considered when reporting immunoprevalence. 

TaBle 4 | numbers and percentages of coimmunopositive samples observed in baseline samples based on cutoff point.

cutoff point criteria 1 (cc1)

Campylobacter jejuni Toxoplasma gondii Helicobacter pylori hepatitis a virus (haV) nov gii.4 nov gi.1

C. jejuni X 130 (6.26) 176 (8.47) 143 (6.88) 260 (12.51) 287 (13.81)

T. gondii X 163 (7.84) 135 (6.50) 233 (11.21) 264 (12.70)

H. pylori X 286 (13.76) 445 (21.41) 544 (26.18)

HAV X 360 (17.32) 448 (21.56)

Nov GII.4 X 1,115 (53.66)

Nov GI.1 X

cutoff point criteria 2 (cc2)

C. jejuni T. gondii H. pylori haV nov gii.4 nov gi.1

C. jejuni X 4 (0.19) 15 (0.72) 17 (0.82) 30 (1.44) 41 (1.97)

T. gondii X 15 (0.72) 11 (0.53) 25 (1.20) 31 (1.49)

H. pylori X 98 (4.72) 123 (5.92) 211 (10.15)

HAV X 135 (6.50) 241 (11.60)

Nov GII.4 X 519 (24.98)

Nov GI.1 X

CC1 (upper panel) and CC2 (lower panel) results indicate the percent of samples that are simultaneously immunopositive to the antigen pairs based on the cutoff points 
(MFI ≥ cutoff point).
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For example, in studies where vaccination coverage rates were 
examined, it was noted that a number of participants fell within a 
“gray zone” (above the negative cutoff point but below the positive 
cutoff point) using saliva (39). This was attributed to differences 
in antibody levels between individuals with wild-type virus or 
vaccine-induced immunity. It was found that sensitivity of the 
oral fluid method increased as antibody titers in serum increased. 
The implication of this finding is that immunoprevalence may 
be underestimated by oral fluid IgG detection because the assay 
may not have sufficient sensitivity when the serum antibody titer 
range is low.

The largest concentration of IgG found in the oral cavity 
gains access to this region by passive diffusion from the blood 
stream using the crevicular epithelium of the gingiva, while the 
remaining concentration of IgG is due to the presence of plasma 
cells in the crevicular epithelium (95). To account for the lower 
concentrations of IgG in saliva, especially compared to IgA, we 
employed the Oracol oral fluid sampler, which is designed to 
collect crevicular fluid enriched with serum antibodies (21). 
Our study focused on measuring systemic rather than mucosal 
immune responses in saliva, exclusively of the IgG isotype. This 
is, in part, because salivary IgA levels are especially influenced 
by a donor’s age, secretory flow rate, acute and chronic stresses, 
and other methodological issues (18). In addition, our previous 
research indicated that IgA from saliva samples produced weaker 
responses compared to IgG in saliva (19, 20).

In spite of these limitations, the utility of the multiplex saliva 
assay is that it can be used for population-based immunopreva-
lence studies, which can be further exploited to understand the 
contemporary epidemiology of common environmental patho-
gens. When used in conjunction with large epidemiological and 
survey type studies of exposure to microbes in water, soil, and 
food, the assay described here may provide valuable information 
to improve our understanding of the transmission of environ-
mental pathogens. Furthermore, salivary antibody data obtained 
from our assay can be used to improve previously described 
dynamic and static risk assessment models (1, 5, 96, 97).

In conclusion, the multiplexed immunoassay presented 
here, together with the cutoff points established, allowed us 
to measure immunoprevalence rates and coinfections to six 
waterborne pathogens among beachgoers in Puerto Rico. A 
follow-up study will explore incident infections and attempt 
to elucidate the sources and health effects of exposure. Future 

work will exploit these techniques to examine exposure patterns 
in other communities. This assay, along with the approaches 
presented here, may enhance our knowledge and understanding 
of environmental microbial pathogenesis and assist risk assess-
ment modelers.
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