

1 Supporting Information
2
3

4 **Non-Targeted Analysis of Surface and Groundwaters Impacted by Historic PFAS Waste
5 Sites**

6 Heather D. Whitehead^{1*}, Timothy J. Buckley¹, Jon R Sobus¹, Jacqueline Bangma¹, Denise K.
7 MacMillan¹, Antony J. Williams¹, Gregory Janesch^{1,2}, James Coombs^{1,2}, Erin Newman³, Andri
8 Dahlmeier⁴, Stefan Saravia⁵, Rosie Rushing⁵, Marla DeVault⁵, James P. McCord^{1*}

9
10 *Corresponding Authors
11
12

- 13 1. U.S. Environmental Protection Agency, Office of Research and Development
- 14 2. Oak Ridge Associated Universities (ORAU)
- 15 3. U.S. Environmental Protection Agency, Region 5
- 16 4. Minnesota Pollution Control Agency
- 17 5. Minnesota Department of Health

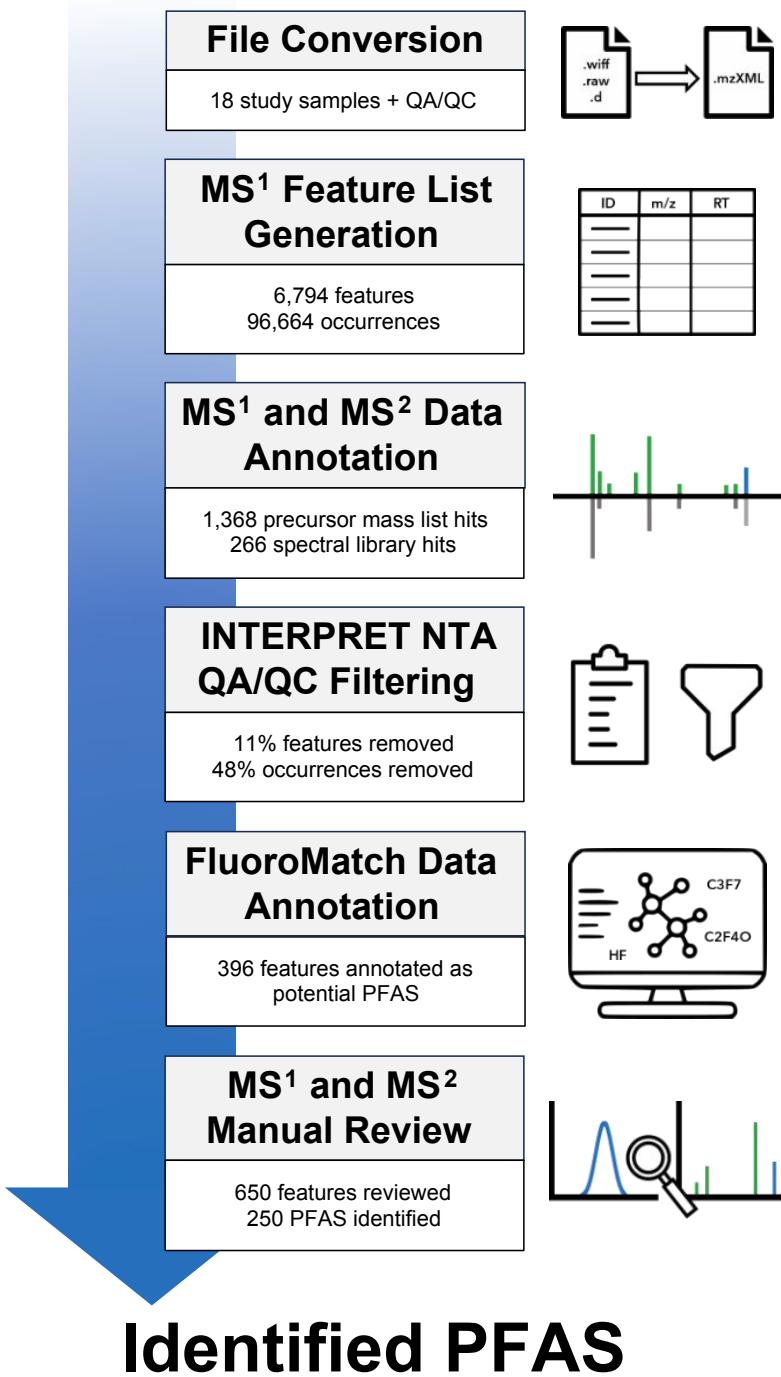
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44 56 Pages
45 15 Figures
46 19 Tables

Table of Contents

47	1. Instrumental Methods, Sample Collection and Preparation, and Data Processing	
48	Parameters	4
49	<i>1.1 Preparation of surface-active foam fractionation (SAFF) sample</i>	4
50	Figure S1. Summary of the data processing workflow steps adapted from Whitehead <i>et al.</i>	
51	(2025)	5
52	Table S1. Native and isotopically-labeled compounds included in the MN study and their	
53	concentrations across different samples	6
54	Table S2. Chromatographic parameters used in data acquisition.....	10
55	Table S3. MS parameters used in data acquisition.....	11
56	Table S4. Parameters used for MSConvert to generate .mzXML files and .ms2 files.....	12
57	Table S5. Modules and parameters used in mzmine.	13
58	Table S6. Parameters used by INTERPRET NTA for QA/QC processing.....	15
59	Table S7. Input parameters used for FluoroMatch Modular.....	16
60	Table S8. Input parameters used in SIRIUS processing.....	17
61	Table S9. Parameters used to perform ion identity and spectral similarity networking in	
62	mzmine.....	18
63	Table S10. Parameters used to perform homologous series identification using	
64	enviHomolog.....	19
65		
66	2. Detection Frequency and Recovery of Native and Isotopically-labeled Compounds	20
67		
68	<i>2.1 Isotopically-labeled Compounds</i>	20
69	Table S11. Observed detection frequencies and max CVs for isotopically-labeled	
70	compounds.....	22
71	Figure S2. Average abundance of each isotopically-labeled compound broken down by the	
72	sample condition or composition	23
73	Figure S3. Boxplot displaying the percent recovery of isotopically-labeled compounds for	
74	all 18 study samples.	24
75	Table S12. Average, minimum, and maximum observed percent recovery of each	
76	isotopically-labeled compound across all 18 study samples.....	25
77		
78	<i>2.2 Native Compounds</i>	26
79	Table S13. Observed detection frequencies and max CVs for native compounds.....	27
80		
81	3. INTERPRET NTA QA/QC Processing	29
82		
83	<i>3.1 Summary of INTERPRET NTA Outputs</i>	29
84	Table S14. Summarized metrics from INTERPRET NTA QA/QC processing and outputs.	30
85	Figure S4. Heatmap displaying the processing outcomes all features across all study	
86	samples. Features are represented across the x-axis and samples along the y-axis.	31
87	Figure S5. Decision tree recording the fate of occurrences for each filtering step during	
88	INTERPRET NTA processing	32
89		
90		
91		

92	Figure S6. Decision tree recording the fate of features for each filtering step during INTERPRET NTA processing	33
93		
94	Table S15. Feature and occurrence decision tree counts for each filtering step for the MS1-	
95	level feature list processed with INTERPRET NTA.....	34
96		
97	<i>3.2 Isotopically-labeled compound performance</i>	35
98	Figure S7. CV scatter plot generated by INTERPRET NTA.....	38
99	Figure S8. Run sequence plots of isotopically-labeled compounds generated by	
100	INTERPRET NTA.	39
101		
102	<i>3.3 Native compound performance</i>	40
103	Figure S9. CV scatter plot generated by INTERPRET NTA.....	43
104		
105	4. Identified PFAS and their Fate and Transport	44
106		
107	<i>4.1 Dilution Calculations</i>	44
108	<i>4.2 Estimating Limits of Detection</i>	44
109	<i>4.3 Predicting Concentrations Downstream</i>	44
110	Table S16. PFAS identified at a Schymanski <i>et al.</i> (2014) scale confidence level 1 with their	
111	observed detection frequencies across all study samples (n=18).	45
112	Table S17. Homologous series identification across all study samples.	46
113	Figure S10. Venn diagram displaying the relationship of 208 PFAS that were identified in	
114	the ground and surface waters at each point source.	48
115	Figure S11. UpSet plot showing the relationship of 33 PFAS measured at one or more	
116	downstream location(s).	49
117	Table S18. Homologous series and individual PFAS measured in at least one downstream	
118	ground or surface water sample.....	50
119	Table S19. Transformation pathways and products identified using the EPA Chemical	
120	Transformation Simulator (CTS) tool with the PFAS environmental reaction library.....	51
121	Figure S12. Boxplot of the dilution factors for chemicals measured at each site downstream	
122	to Point1-GW.	52
123	Figure S13. Histogram plot of the distribution of dilution factors for chemicals measured at	
124	both Point1-GW and Point1-GW-Downstream1 and Point1-GW-Downstream2.	53
125	Figure S14. Histogram plot of the distribution of concentrations estimated in all ground and	
126	surface water samples.....	54
127	Figure S15. Histogram of the concentrations estimated for compounds not measured	
128	downstream from Point1-GW compared to estimated limit of detection.	55
129		
130	5. References	56
131		
132		

133 **1. Instrumental Methods, Sample Collection and Preparation, and Data Processing**
134 **Parameters**


135
136 *1.1 Preparation of surface-active foam fractionation (SAFF) sample*

137 The SAFF concentrate was collected from a SAFF unit undergoing pilot testing for
138 surface and groundwater PFAS remediation and its concentrate was examined here to measure
139 the specific PFAS collected and concentrated within the watershed.¹ The SAFF concentrate was
140 collected in May 2023 when the SAFF unit was installed at Tablyn Park in Lake Elmo, MN.
141 After collection the SAFF concentrate was transferred to the Minnesota Department of Health.
142 As the concentrate was expected to contain elevated concentrations of PFAS due to the
143 concentration processes employed in the technology, the concentrate was first analyzed for
144 relative concentrations of target PFAS to inform appropriate dilution factors prior to sample
145 preparation. From these relative estimates it was determined that 820 \times dilution factor would be
146 used by diluting 500 μ L of SAFF sample into 410 mL of laboratory-grade water. The SAFF
147 concentrate was then prepared and analyzed alongside other study samples as described in the
148 main text.

149

150 **Figure S1.** Summary of the data processing workflow steps adapted from Whitehead *et al.*
151 (2025). For each step the number of samples, features, occurrences, and/or annotations are given.
152

Raw Data

154 **Table S1.** Native and isotopically-labeled compounds included in the MN study and their concentrations across different samples.

Type	Name	Acronym	Formula	DTXSID	Final, in-vial concentration in study samples and pooled matrix control (ng/mL)	Final, in-vial concentration in pooled matrix calibrant concentration #1 (ng/mL)	Final, in-vial concentration in pooled matrix calibrant concentration #2 (ng/mL)	Final, in-vial concentration in pooled matrix calibrant concentration #3 (ng/mL)	Final, in-vial concentration in pooled matrix calibrant concentration #4 (ng/mL)	Final, in-vial concentration in pooled matrix calibrant concentration #5 (ng/mL)
Native standard	Perfluorobutanoic acid	PFBA	C4HF7O2	DTXSID4059916		10.24	25.60	64.00	160.00	400.00
Native standard	Perfluoropentanoic acid	PFPeA	C5HF9O2	DTXSID6062599		5.12	12.80	32.00	80.00	200.00
Native standard	Perfluorohexanoic acid	PFHxA	C6HF11O2	DTXSID3031862		2.56	6.40	16.00	40.00	100.00
Native standard	Perfluoroheptanoic acid	PFHpA	C7HF13O2	DTXSID1037303		2.56	6.40	16.00	40.00	100.00
Native standard	Perfluoroctanoic acid	PFOA	C8HF15O2	DTXSID8031865		2.56	6.40	16.00	40.00	100.00
Native standard	Perfluoronanoic acid	PFNA	C9HF17O2	DTXSID8031863		2.56	6.40	16.00	40.00	100.00
Native standard	Perfluorodecanoic acid	PFDA	C10HF19O2	DTXSID3031860		2.56	6.40	16.00	40.00	100.00
Native standard	Perfluoroundecanoic acid	PFUnA	C11HF21O2	DTXSID8047553		2.56	6.40	16.00	40.00	100.00
Native standard	Perfluorododecanoic acid	PFDa	C12HF23O2	DTXSID8031861		2.56	6.40	16.00	40.00	100.00
Native standard	Perfluorotridecanoic acid	PFTrDA	C13HF25O2	DTXSID90868151		2.56	6.40	16.00	40.00	100.00
Native standard	Perfluorotetradecanoic acid	PFTeDA	C14HF27O2	DTXSID3059921		2.56	6.40	16.00	40.00	100.00
Native standard	Perfluorobutanesulfonic acid	PFBS	C4HF9O3S	DTXSID5030030		2.27	5.68	14.19	35.48	88.70
Native standard	Perfluoropentanesulfonic acid	PFPeS	C5HF11O3S	DTXSID8062600		2.41	6.02	15.06	37.64	94.10
Native standard	Perfluorohexanesulfonic acid	PFHxS	C6HF13O3S	DTXSID7040150		2.34	5.85	14.62	36.56	91.40
Native standard	Perfluoroheptanesulfonic acid	PFHpS	C7HF15O3S	DTXSID8059920		2.44	6.10	15.25	38.12	95.30
Native standard	Perfluoroctanesulfonic acid	PFOS	C8HF17O3S	DTXSID3031864		2.38	5.94	14.85	37.12	92.80
Native standard	Perfluorononanesulfonic acid	PFNS	C9HF19O3S	DTXSID8071356		2.46	6.16	15.39	38.48	96.20
Native standard	Perfluorodecanesulfonic acid	PFDS	C10HF21O3S	DTXSID3040148		2.47	6.18	15.44	38.60	96.50
Native standard	Perfluorododecanesulfonic acid	PFDs	C12HF25O3S	DTXSID20873011		2.48	6.21	15.52	38.80	97.00
Native standard	4:2 Fluorotelomer sulfonic acid	4:2 FTS	C6H5F9O3S	DTXSID30891564		9.60	24.00	60.00	150.00	375.00
Native standard	6:2 Fluorotelomer sulfonic acid	6:2 FTS	C8H5F13O3S	DTXSID6067331		9.73	24.32	60.80	152.00	380.00
Native standard	8:2 Fluorotelomer sulfonic acid	8:2 FTS	C10H5F17O3S	DTXSID00192353		9.83	24.58	61.44	153.60	384.00
Native standard	Perfluoroctanesulfonamide	PFOSA	C8H2F17NO2S	DTXSID3038939		2.56	6.40	16.00	40.00	100.00
Native standard	N-Methylperfluoroctanesulfonamide	NMeFOSA	C9H4F17NO2S	DTXSID1067629		2.56	6.40	16.00	40.00	100.00
Native standard	N-Ethylperfluoroctane sulfonamide	NEtFOSA	C10H6F17NO2S	DTXSID1032646		2.56	6.40	16.00	40.00	100.00
Native standard	2-(N-Methylperfluoroctanesulfonamido)acetic acid	NMeFOSAA	C11H6F17NO4S	DTXSID10624392		2.56	6.40	16.00	40.00	100.00

Type	Name	Acronym	Formula	DTXSID	Final, in-vial concentration in study samples and pooled matrix control (ng/mL)	Final, in-vial concentration in pooled matrix calibrant concentration #1 (ng/mL)	Final, in-vial concentration in pooled matrix calibrant concentration #2 (ng/mL)	Final, in-vial concentration in pooled matrix calibrant concentration #3 (ng/mL)	Final, in-vial concentration in pooled matrix calibrant concentration #4 (ng/mL)	Final, in-vial concentration in pooled matrix calibrant concentration #5 (ng/mL)
Native standard	2-(N-Ethylperfluorooctanesulfonamido)acetic acid	NEtPOSAA	C12H8F17NO4S	DTXSID5062760		2.56	6.40	16.00	40.00	100.00
Native standard	N-Methyl-N-(2-hydroxyethyl)perfluorooctanesulfonamide	NMeFOSE	C11H8F17NO3S	DTXSID7027831		25.60	64.00	160.00	400.00	1000.00
Native standard	N-Ethyl-N-(2-hydroxyethyl)perfluorooctane sulfonamide	NEtFOSE	C12H10F17NO3S	DTXSID6027426		25.60	64.00	160.00	400.00	1000.00
Native standard	Perfluoro-2-methyl-3-oxahexanoic acid	HFPO-DA	C6HF11O3	DTXSID70880215		5.12	12.80	32.00	80.00	200.00
Native standard	4,8-Dioxa-3H-perfluorononanoic acid	ADONA	C7H2F12O4	DTXSID40881350		4.84	12.10	30.24	75.60	189.00
Native standard	Perfluoro-3-methoxypropanoic acid	PFMPA	C4HF7O3	DTXSID70191136		5.12	12.80	32.00	80.00	200.00
Native standard	Perfluoro(4-methoxybutanoic acid)	PFMBA	C5HF9O3	DTXSID60500450		5.12	12.80	32.00	80.00	200.00
Native standard	Perfluoro-3,6-dioxaheptanoic acid	NFDHA	C5HF9O4	DTXSID30382063		5.12	12.80	32.00	80.00	200.00
Native standard	Perfluoro(2-((6-chlorohexyl)oxy)ethanesulfonic acid)	9Cl-PF3ONS	C8HClF16O4S	DTXSID80892506		4.79	11.97	29.92	74.80	187.00
Native standard	11-Chloroperfluoro-3-oxaundecanesulfonic acid	11Cl-PF3OUdS	C10HClF20O4S	DTXSID40892507		4.84	12.10	30.24	75.60	189.00
Native standard	Perfluoro-2-ethoxyethanesulfonic acid	PFEESA	C4HF9O4S	DTXSID50379814		4.56	11.39	28.48	71.20	178.00
Native standard	3:3 Fluorotelomer carboxylic acid	3:3 FTCA	C6H5F7O2	DTXSID00379268		10.24	25.60	64.00	160.00	400.00
Native standard	2H,2H,3H,3H-Perfluorooctanoic acid	5:3 FTCA	C8H5F11O2	DTXSID20874028		51.20	128.00	320.00	800.00	2000.00
Native standard	3-(Perfluoroheptyl)propanoic acid	7:3 FTCA	C10H5F15O2	DTXSID90382620		51.20	128.00	320.00	800.00	2000.00
Extracted internal standard (EIS)	Perfluoro-n-(13C4)butanoic acid	13C4-PFBA	[13C]4HF7O2	DTXSID201028085	10.00	10.00	10.00	10.00	10.00	10.00
Extracted internal standard (EIS)	Perfluoro-n-(13C5)pentanoic acid	13C5-PFPeA	[13C]5HF9O2	DTXSID401337529	5.00	5.00	5.00	5.00	5.00	5.00
Extracted internal standard (EIS)	Perfluoro[1,2,3,4,6-13C5]hexanoic acid	13C5-PFHxA	C[13C]5HF11O2	DTXSID801028083	2.50	2.50	2.50	2.50	2.50	2.50
Extracted internal standard (EIS)	Perfluoro-n-[1,2,3,4-13C4]heptanoic acid	13C4-PFHxA	C3[13C]4HF13O2	DTXSID801337533	2.50	2.50	2.50	2.50	2.50	2.50
Extracted internal standard (EIS)	Perfluoro-n-[13C8]octanoic acid	13C8-PFOA	[13C]8HF15O2	DTXSID501337534	2.50	2.50	2.50	2.50	2.50	2.50
Extracted internal standard (EIS)	Perfluoro-n-(13C9)nonanoic acid	13C9-PFNA	[13C]9HF17O2	DTXSID201337535	1.25	1.25	1.25	1.25	1.25	1.25
Extracted internal standard (EIS)	Perfluoro-n-(1,2,3,4,5,6-13C6)decanoic acid	13C6-PFDA	C4[13C]6HF19O2	DTXSID50925719	1.25	1.25	1.25	1.25	1.25	1.25

Type	Name	Acronym	Formula	DTXSID	Final, in-vial concentration in study samples and pooled matrix control (ng/mL)	Final, in-vial concentration in pooled matrix calibrant concentration #1 (ng/mL)	Final, in-vial concentration in pooled matrix calibrant concentration #2 (ng/mL)	Final, in-vial concentration in pooled matrix calibrant concentration #3 (ng/mL)	Final, in-vial concentration in pooled matrix calibrant concentration #4 (ng/mL)	Final, in-vial concentration in pooled matrix calibrant concentration #5 (ng/mL)
Extracted internal standard (EIS)	Perfluoro-n-[1,2,3,4,5,6,7-13C7]undecanoic acid	13C7-PFUnA	C4[13C]7HF21O2	DTXSID101028082	1.25	1.25	1.25	1.25	1.25	1.25
Extracted internal standard (EIS)	Perfluoro[1,2-13C2]dodecanoic acid	13C2-PFDaA	C10[13C]2HF23O2	DTXSID001028089	1.25	1.25	1.25	1.25	1.25	1.25
Extracted internal standard (EIS)	Perfluoro-n-[1,2-13C2]tetradecanoic acid	13C2-PFTeDA	C12[13C]2HF27O2	DTXSID301028088	1.25	1.25	1.25	1.25	1.25	1.25
Extracted internal standard (EIS)	Perfluoro-1-[1,2,3-13C3]butanesulfonic acid	13C3-PFBS	C[13C]3HF9O3S	DTXSID201350167	2.50	2.50	2.50	2.50	2.50	2.50
Extracted internal standard (EIS)	Perfluoro-1-[1,2,3-13C3]hexanesulfonic acid	13C3-PFHxS	C3[13C]3HF13O3S	DTXSID901350170	2.50	2.50	2.50	2.50	2.50	2.50
Extracted internal standard (EIS)	Perfluoro-[13C8]octanesulfonic acid	13C8-PFOS	[13C]8HF17O3S	DTXSID601350171	2.50	2.50	2.50	2.50	2.50	2.50
Extracted internal standard (EIS)	Perfluoro-1-[13C8]octanesulfonamide	13C8-PFOSA	[13C]8H2F17NO2S	DTXSID001337591	2.50	2.50	2.50	2.50	2.50	2.50
Extracted internal standard (EIS)	2-(N-Methyl-d3-perfluoroctanesulfonamido)acetic acid	D3-NMeFOSAA	C11H3D3F17NO4S	DTXSID701337609	5.00	5.00	5.00	5.00	5.00	5.00
Extracted internal standard (EIS)	2-(N-Ethyl-d5-perfluoroctanesulfonamido)acetic acid	D5-NEtFOSAA	C12H3D5F17NO4S	DTXSID001337610	5.00	5.00	5.00	5.00	5.00	5.00
Extracted internal standard (EIS)	1H,1H,2H,2H-perfluoro-1-[1,2-13C2]-hexanesulfonic acid	13C2-4:2FTS	C4[13C]2HF9O3S	DTXSID101350176	5.00	5.00	5.00	5.00	5.00	5.00
Extracted internal standard (EIS)	1H,1H,2H,2H-perfluoro-1-[1,2-13C2]-octanesulfonic acid	13C2-6:2FTS	C6[13C]2HF13O3S	DTXSID801350177	5.00	5.00	5.00	5.00	5.00	5.00
Extracted internal standard (EIS)	1H,1H,2H,2H-Perfluoro-1-[1,2-13C2]-decanesulfonic acid	13C2-8:2FTS	C8[13C]2HF17O3S	DTXSID501350178	5.00	5.00	5.00	5.00	5.00	5.00
Extracted internal standard (EIS)	2,3,3,3-Tetrafluoro-2-(1,1,2,2,3,3,3-heptafluoropropoxy)(13C3)propanoic acid	13C3-HFPO-DA	C3[13C]3HF11O3	DTXSID50892477	10.00	10.00	10.00	10.00	10.00	10.00
Extracted internal standard (EIS)	2-(N-Methyl-d3-perfluoro-1-octanesulfonamido)ethan-d4-ol	D7-NMeFOSE	C11HD7F17NO3S	DTXSID701337611	25.00	25.00	25.00	25.00	25.00	25.00
Extracted internal standard (EIS)	N-Ethyl-d5-N-(2-hydroxyethyl-d4)perfluoroctane sulfonamide	D9-NEtFOSE	C12HD9F17NO3S	DTXSID401337612	25.00	25.00	25.00	25.00	25.00	25.00
Extracted internal standard (EIS)	N-Ethyl-d5-perfluoroctanesulfonamide	D5-NEtFOSA	C10HD5F17NO2S	DTXSID001337608	2.50	2.50	2.50	2.50	2.50	2.50

Type	Name	Acronym	Formula	DTXSID	Final, in-vial concentration in study samples and pooled matrix control (ng/mL)	Final, in-vial concentration in pooled matrix calibrant concentration #1 (ng/mL)	Final, in-vial concentration in pooled matrix calibrant concentration #2 (ng/mL)	Final, in-vial concentration in pooled matrix calibrant concentration #3 (ng/mL)	Final, in-vial concentration in pooled matrix calibrant concentration #4 (ng/mL)	Final, in-vial concentration in pooled matrix calibrant concentration #5 (ng/mL)
Extracted internal standard (EIS)	N-Methyl-d3-perfluorooctanesulfonamide	D3-NMeFOSA	C9HD3F17NO2S	DTXSID301337607	2.50	2.50	2.50	2.50	2.50	2.50
Non-extracted internal standard (NIS)	Perfluoro-n-(2,3,4-13C3)butanoic acid	13C3-PFBA	C[13C]3HF7O2	DTXSID301337564	5.00	5.00	5.00	5.00	5.00	5.00
Non-extracted internal standard (NIS)	Perfluoro-n-[1,2,3,4-13C4]-octanoic acid	13C4-PFOA	C4[13C]4HF15O2	DTXSID70892999	2.50	2.50	2.50	2.50	2.50	2.50
Non-extracted internal standard (NIS)	Perfluoro-n-(1,2-13C2)decanoic acid	13C2-PFDA	C8[13C]2HF19O2	DTXSID20894100	1.25	1.25	1.25	1.25	1.25	1.25
Non-extracted internal standard (NIS)	heptadecafluoro(1,2,3,4-13C4)octane-1-sulfonic acid	13C4-PFOS	C4[13C]4HF17O3S	DTXSID80894101	2.50	2.50	2.50	2.50	2.50	2.50
Non-extracted internal standard (NIS)	Perfluoro-n-(1,2,3,4,5-13C5)nonanoic acid	13C5-PFNA	C4[13C]5HF17O2	DTXSID70894099	1.25	1.25	1.25	1.25	1.25	1.25
Non-extracted internal standard (NIS)	Perfluoro[1,2-13C2]hexanoic acid	13C2-PFHxA	C4[13C]2HF11O2	DTXSID901028086	2.50	2.50	2.50	2.50	2.50	2.50
Non-extracted internal standard (NIS)	Perfluoro-1-hexane[18O2]sulfonic acid	18O2-PFHxS	[18O]2C6HF13OS		2.50	2.50	2.50	2.50	2.50	2.50

155

156

157

158 **Table S2.** Chromatographic parameters used in data acquisition.

Mobile phase A	95/5 water/acetonitrile with 2 mM ammonium acetate		
Mobile phase B	100% acetonitrile		
Column	Agilent Infinity Lab Poroshell 120 EC-C18 (2.1x100 mm, 2.7 μ m)		
Column temperature (°C)	40		
Injection volume (μL)	10		
Time (min)	% A	% B	Flow rate (mL/min)
0.0	98	2	0.35
0.1	98	2	0.35
4	70	30	0.4
7	45	55	0.4
9	25	75	0.4
10	5	95	0.4
10.4	98	2	0.4
11.8	98	2	0.4
12	98	2	0.35

159

160

Table S3. MS parameters used in data acquisition.

Ion source parameters	
Ion source	TurbolonSpray
Polarity	Negative
Curtain gas (psi)	15
Ion source gas 1 (psi)	60
Ion source gas 2 (psi)	60
Gas temperature (°C)	350
Voltage (V)	-4500
MS¹ (TOFMS) parameters	
Starting mass (Da)	100
Ending mass (Da)	1250
Accumulation time (ms)	100
Declustering potential (V)	-50
Declustering potential spread (V)	0
Collision energy (V)	-5
Collision energy spread (V)	0
CAD gas	7
MS² (TOFMSMS) parameters	
Starting mass (Da)	50
Ending mass (Da)	1250
Accumulation time (ms)	50
Declustering potential (V)	-40
Declustering potential spread (V)	0
Collision energy (V)	-30
Collision energy spread (V)	15
CAD gas	7
DDA precursor ion selection parameters	
Maximum candidate ions	15
Intensity threshold exceeds (counts/s)	100
Dynamic background subtraction	Selected
Exclude former candidate ions	Selected (<i>exclude for 4 seconds after 3 occurrences</i>)
Mass tolerance (ppm)	5
Inclusion list	Selected (<i>includes native and isotopically-labeled compounds</i>)
Q1 resolution	Unit

164 **Table S4.** Parameters used for MSConvert to generate .mzXML files and .ms2 files.

Option/Filter	Value
.mzXML for mzmine processing	
Output format	mzXML
Binary encoding precision	64-bit
Write index, zlib compression, TPP compatibility	Selected
Peak Picking MS Level	1 -
MS Level Subset	1 -
Number of Data Points Subset	2 -
Polarity Subset	Negative
.ms2 for FluoroMatch processing	
Output format	ms2
Binary encoding precision	64-bit
Write index, zlib compression, TPP compatibility	Selected
Peak Picking MS Level	2 - 2
MS Level Subset	2 - 2
Number of Data Points Subset	2 -
Polarity Subset	Negative

165

166

Table S5. Modules and parameters used in mzmine.

mzmine Module	Module Parameter	Threshold or Value Used
Crop Filtering		
	MS Level	All
	RT range	1.0 – 12 min
	Filter out empty scans	Selected
Mass Detection		
	MS Level	1
	RT range	1.0 – 12 min
	Mass detector	Centroid
	Noise threshold	1.0E3
	Detect isotope signals below noise level	Selected
Mass Detection		
	Mass Level	2
	RT range	1.0 – 12 min
	Mass detector	Centroid
	Noise threshold	1.0E2
ADAP Chromatogram Building		
	MS Level	1
	RT range	1.0 – 12 min
	Minimum consecutive scans	1
	Minimum intensity for consecutive scans	1.0E2
	Minimum absolute height	1.0E3
	m/z tolerance	0.002 m/z or 10 ppm
Chromatogram Resolving		
	Algorithm	Local minimum
	MS/MS scan pairing	Selected
	MS/MS scan pairing: MS1 to MS2 precursor tolerance	0.02 m/z or 10 ppm
	MS/MS scan pairing: Retention time filter	Use tolerance of 0.2 min
	MS/MS scan pairing: Minimum required signals	1
	Dimension	Retention time
	Chromatographic threshold	90%
	Minimum search range RT (absolute)	0.05
	Minimum relative height	0%
	Minimum absolute height	1.0E3
	Min ratio of peak top/edge	1.70
	Peak Duration Range	0.01-0.5
	Minimum scans (data points)	3
¹³ C Isotope Filter		
	m/z tolerance	0.002 m/z or 10 ppm
	Retention time tolerance	0.5 min
	Maximum charge	1
	Require monoisotopic shape	Selected
	Representative isotope	Most intense
Isotope Pattern Finder		
	Chemical elements	H, C, N, O, S
	m/z tolerance (feature-to-scan)	0.0005 m/z or 10 ppm
	Maximum charge	1
Alignment		
	m/z tolerance	0.002 m/z or 10 ppm

	Weight for m/z	20
	Retention time tolerance	0.5 min
	Weight for RT	10
Gap-filling		
	Intensity tolerance	10%
	m/z tolerance	0.002 m/z or 10 ppm
	Retention time tolerance	0.5 min
	Minimum scans (data points)	1
Duplicate Peak Filter		
	Filter mode	New Average
	m/z tolerance	0.002 m/z or 10 ppm
	Retention time tolerance	0.5 min
Local compound database search		
	Database file	PFASStructPrecursorForMZmine
	Columns	Name, mz, comment
	m/z tolerance	0.002 m/z or 10 ppm
Spectral library search		
	Imported spectral libraries	AMOS ESI-PFAS single spectra
	Scans for matching	MS2 (all scans)
	Precursor m/z tolerance	0.002 m/z or 10 ppm
	Spectral m/z tolerance	0.002 m/z or 10 ppm
	Remove precursor	Unselected
	Minimum matched signals	1
	Similarity	Weighted cosine similarity
	<i>Similarity: Weights</i>	MassBank
	<i>Similarity: Minimum cos similarity</i>	0.700
	<i>Similarity: Handle unmatched signals</i>	Keep all and match to zero

168

169

170 **Table S6.** Parameters used by INTERPRET NTA for QA/QC processing.

171

Input Parameter	Value Used
Positive mode adducts	[M+Na]+, [M+NH4]+, [M+K]+
Negative mode adducts	[M+Cl]-, [M+HCO2]-, [M+CH3CO2]-, [M+FA]-
Neutral losses	[M-H2O], [M-CO2]
Adduct / duplicate mass accuracy units	ppm
Adduct / duplicate mass accuracy	10
Adduct /duplicate RT accuracy (mins)	0.05
Tracer mass accuracy units	ppm
Tracer mass accuracy	5
Tracer RT accuracy (mins)	0.1
Tracer plot y-axis scaling	log
Tracer plot trendlines shown	yes
Min. replicate hits (%)	66
Min. replicate hits in blanks (%)	66
Max. replicate CV	0.8
MRL standard deviation multiplier:	3
Parent ion mass accuracy (ppm)	5
Discard features below this RT (mins)	0.0
Search DSSTox for possible structures	Yes
Search Cheminformatics Hazard Module	No
Search DSSTox by	Mass
Save top result only?	No

172

173

174 **Table S7.** Input parameters used for FluoroMatch Modular.

Input Parameter	Value used	Default value
Retention time window (min)	Default	0.1
Mass accuracy window for experimental and <i>in-silico</i> fragments (ppm)	Default	10
Mass accuracy window for matching experimental and <i>in-silico</i> precursors (Da)	Default	0.01
MS/MS isolation window (Da)	Default	0.4
Threshold for determining minimum signal intensity for MS/MS ions	10	1000
Comment column	1	NA
m/z column	2	NA
RT column	3	NA
First numeric row	2	NA
Upper limit for mass defect filter	Default	0.12
Lower limit for mass defect filter	Default	-0.11
Minimum number of MS/MS scans	Default	1

175

176

177 **Table S8.** Input parameters used in SIRIUS processing.

Option/Filter	Value
SIRIUS – Molecular formula identification	
Instrument	Q-TOF
Filter by isotope pattern	Unselected
MS2 mass accuracy (ppm)	10
MS/MS isotope scorer	Ignore
Candidates stored	10
Min candidates per ion stored	1
Use heuristic above m/z	300
Use heuristic only above m/z	650
Possible ionization	[M-H]-
<i>Elements allowed:</i>	
H	0 - inf
C	0 - inf
N	0 - 5
O	0 - inf
P	0 - 1
S	0 - 3
Cl	0 - 5
Br	0 - 1
I	0 - 1
F	0 - inf
<i>Formula prediction excluded for high MW compounds</i>	
ZODIAC – Network-based improvement of molecular formula ranking	
Considered candidates 300 m/z	10
Considered candidates 800 m/z	50
Use 2-step approach	Selected
<i>Edge Filters:</i> Edge threshold	0.95
<i>Edge Filters:</i> Min local connections	10
<i>Gibbs Sampling:</i> Iterations	20,000
<i>Gibbs Sampling:</i> Burn-in	2,000
<i>Gibbs Sampling:</i> Separate runs	10
CSI:FingerID – Fingerprint Prediction & Structure Database Search	
Fallback adducts	[M-H]-
Search databases	PubChem
CANOPUS – Compound Class Prediction	
<i>No parameters to set</i>	

178
179

180 **Table S9.** Parameters used to perform ion identity and spectral similarity networking in mzmine.

Correlation grouping	
RT tolerance (absolute)	0.1 min
Minimum feature height	0.0
Intensity threshold for correlation	0.0
Minimum samples filter: min samples in all	Max of 1 sample or 10%
Minimum samples filter: min samples in group	Max of 0 samples or 0%
Minimum samples filter: min %-intensity overlap	60%
Feature shape correlation	Unselected
Feature height correlation: minimum samples	2
Feature height correlation: measure	Pearson
Feature height correlation: min correlation	70%
Ion identity networking	
m/z tolerance (intra-sample)	0.002 m/z or 10 ppm
Check	Average
Min height	0.0
Ion identity library: MS mode	Negative
Ion identity library: maximum charge	2
Ion identity library: maximum molecules/cluster	3
Ion identity library: adducts	[M]-, [M-H]-, [M+Na]-, [M+Cl]-, [M+FA]-
Ion identity library: modifications	[M-H2O], [M-NH3], [M-CO], [M-CO2]
Annotation refinement: minimum size	2
Annotation refinement: delete small networks without major ion	Selected
Annotation refinement: delete networks without monomer	Selected
MS/MS spectral networking	
m/z tolerance (MS2)	0.002 m/z or 10 ppm
Only best MS2 scan	Selected
Minimum matched signals	3
Min cosine similarity	0.8
Check MS2 neutral loss similarity: maximum DP for differences matching	25
Signal filters: remove residual precursor m/z	10
Signal filters: Crop to top N signals	250
Signal filters: signal threshold	50
Signal filters: intensity filter at >N signals	98

181

182

183

184 **Table S10.** Parameters used to perform homologous series identification using enviHomolog.
185

Input Parameter	Value Used
m/z tolerance	3 ppm
Max m/z difference between homologs	200 Da
Min m/z difference between homologs	5 Da
Max retention time difference between homologs	120 seconds
Min retention time difference between homologs	10 seconds

186
187
188
189
190

191 **2. Detection Frequency and Recovery of Native and Isotopically-labeled Compounds**

192 *2.1 Isotopically-labeled Compounds*

193 The detection frequencies and maximal CV observed for all isotopically-labeled
194 compounds across all study samples are listed in **Table S11**. Feature detection frequencies ranged
195 from 86-100% with an average max CV of 0.68 with a CV range of 0.39-1.22. **Table S11** breaks
196 down detection frequencies and CVs based on the sample type. Detection frequencies were 100%
197 in blanks and ranged from 86-100% in samples. Max CVs were always lower in blanks than study
198 samples, which had average max CVs of 0.44 and 0.68, respectively. One isotopically-labeled
199 compound, 13C4-PFBA, was not detected in any sample. Manual review of the feature list
200 confirmed that no feature was present, and review of extracted ion chromatograms of this feature
201 showed no peak for the expected m/z at the expected retention time. It is possible that this
202 compound had poor sensitivity or other factors that limited its measurement. No trends with respect
203 to PFAS chain length or functional group were obvious within the detection frequency or max CV
204 data.

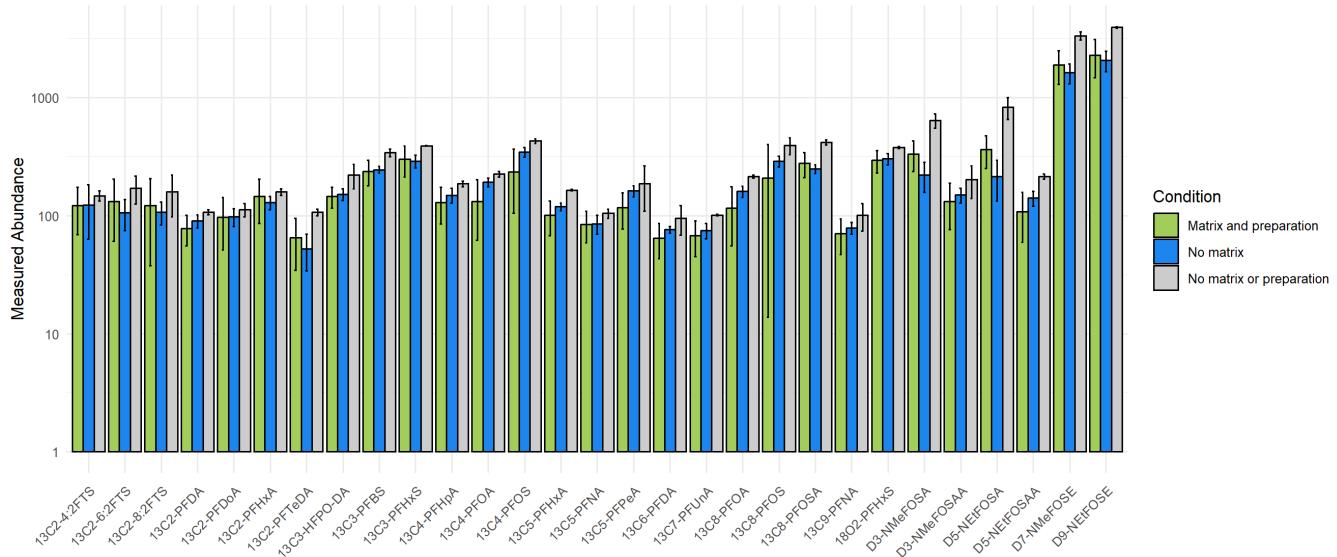
205 The recovery of isotopically-labeled compounds can be used to assess losses or gains due
206 to the sample preparation method and/or the sample matrix. The average recovery of each
207 isotopically-labeled compound is shown in **Figure S2** and is broken down based on the sample
208 condition. These conditions are defined based on whether the compound was subjected to sample
209 preparation and the presence of sample matrix. Sample preparation is anticipated to cause lower
210 response due to sample recovery, while matrix is anticipated to yield lower response due to ion
211 suppression. As expected, **Figure S2** does show relatively higher abundance of all isotopically-
212 labeled compounds in samples that did not undergo sample preparation relative to those that did.
213 Comparing matrix influence, as shown in **Figure S2**, the abundance of isotopically-labeled
214 compounds is comparable for prepared samples with and without matrix, highlighting that sample
215 preparation was the primary source of PFAS losses rather than ion suppression, except for in
216 Point1-GW where suppression was large due to saturation of analyte signal, exceeding the
217 instrumental dynamic range, in the sample itself.

218 The percent recovery of isotopically-labeled compounds was determined by dividing the
219 individual response of an isotopically-labeled compound in each study sample by the average
220 isotopically-labeled compound response for control and blank samples, which underwent sample
221 preparation but did not have sample matrix (Eq 1).

222

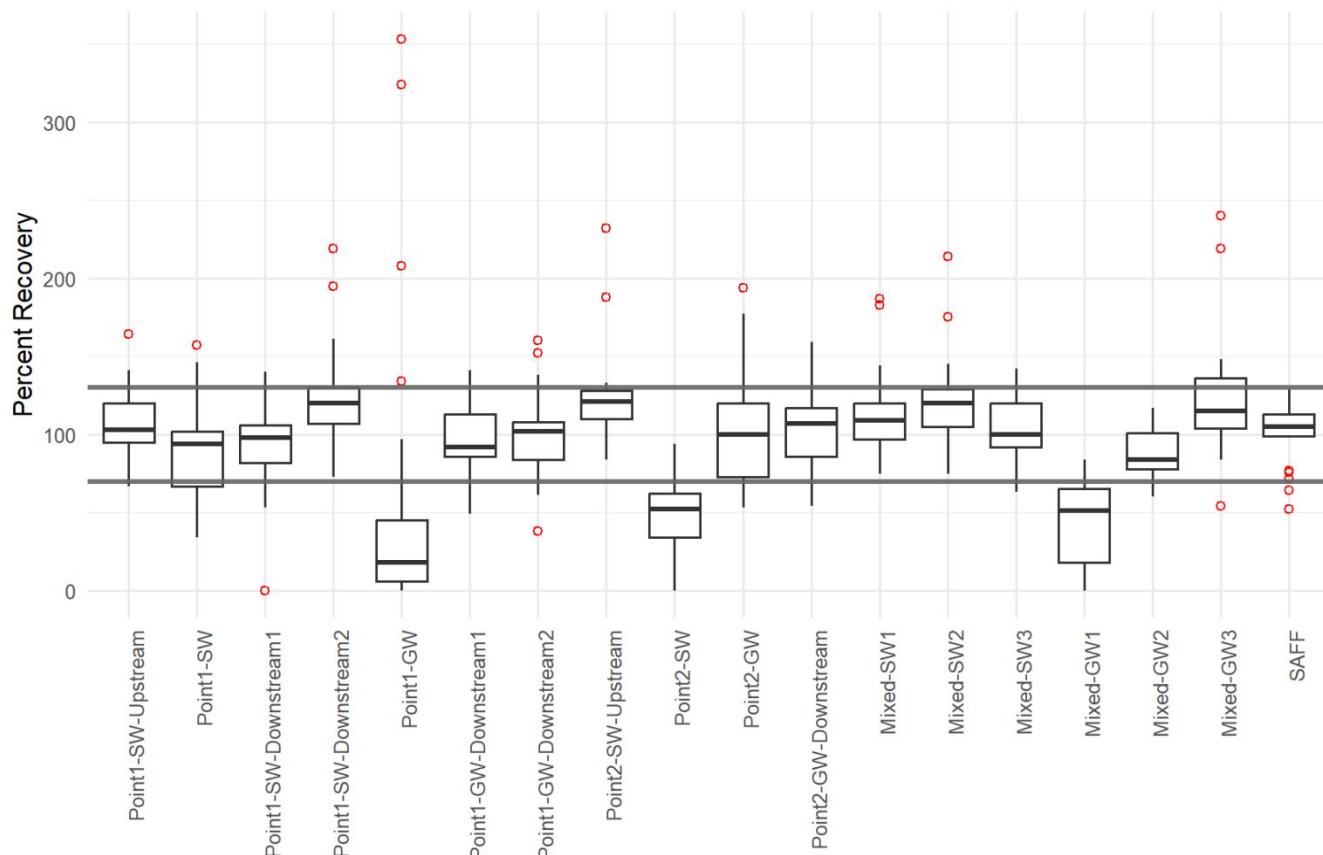
$$\text{Percent Recovery} = \frac{\text{Individual compound response in study sample}}{\text{Average compound response in "No matrix" samples}} \times 100$$

223 A boxplot displaying the recovery of all isotopically-labeled compounds for each study
224 sample is shown in **Figure S3**. For PFAS targeted analyses, isotopically-labeled compound
225 recovery in samples is typically expected within ~30% of the expected value. Here, a \pm 30%
226 threshold is shown as gray horizontal bars in **Figure S3**. Three samples, Point1-GW, Point2-SW,
227 and Mixed-GW1 had median isotopically-labeled compound recoveries outside the 70-130%
228 range. During sample preparation each of these samples were noted to be difficult or slow to extract
229 using the SPE cartridge, potentially contributing to loss. Qualitative and quantitative results
230 presented here for Point2-SW and Mixed-GW1 are likely to be underreported or underestimated
231 as a consequence of poor recovery. Manual review of extracted ion chromatograms for Point1-
232 GW demonstrated signal saturation of several native compounds that impacted the performance of
233 co-eluting compounds, including isotopically-labeled compounds. To account for this saturation,
234


237 the sample extract for Point1-GW was diluted 25 \times and 200 \times (using the method blank as a diluent)
238 and reanalyzed to appropriately measure signal abundance for analytes. The boxplot also shows
239 nearly all samples have high-recovery outlier points. As shown in **Table S12**, high-recovery outlier
240 points were primarily due to two compounds, D3-NMeFOSA and D5-NEtFOSA, which had
241 average percent recovery of 144% and 160%, respectively. The cause of these compounds to be
242 over-recovered in samples is not known.

243
244

245 **Table S11.** Observed detection frequencies and max CVs for isotopically-labeled compounds.


Chemical Name	Mass	Observed Mass	Mass Error (PPM)	Retention Time (min)	Observed Retention Time (min)	Retention Time Difference (min)	Detection Frequency in Blanks	Detection Frequency in Samples	Max CV in Blanks	Max CV in Samples
13C2-4:2FTS	329.9883	329.9877	-1.8	5.42	4.95	-0.47	100	100	0.35	1.21
13C2-6:2FTS	429.9819	429.9810	-2.1	6.23	6.21	-0.02	100	100	0.37	1.22
13C2-8:2FTS	529.9755	529.9742	-2.5	7.25	7.24	-0.01	100	100	0.55	0.80
13C2-PFDA	515.9740	515.9738	-0.4	7.48	7.47	-0.01	100	100	0.49	0.67
13C2-PFDoA	615.9676	615.9672	-0.7	8.46	8.42	-0.04	100	93	0.38	0.47
13C2-PFHxA	315.9868	315.9864	-1.3	5.10	5.20	0.10	100	100	0.42	0.61
13C2-PFTeDA	715.9612	715.9605	-1.0	9.28	9.26	-0.02	100	86	0.66	0.68
13C3-HFPO-DA	287.9917	287.9917	-0.1	5.45	5.45	0.00	100	100	0.39	0.51
13C3-PFBS	302.9603	302.9602	-0.4	5.28	5.27	-0.01	100	100	0.48	0.80
13C3-PFHxS	402.9539	402.9530	-2.3	6.68	6.65	-0.03	100	100	0.41	0.60
13C4-PFHxA	367.9903	367.9902	-0.3	5.89	5.87	-0.02	100	100	0.40	0.41
13C4-PFOA	417.9871	417.9869	-0.5	6.47	6.44	-0.03	100	100	0.36	1.00
13C4-PFOS	503.9509	503.9501	-1.6	7.75	7.71	-0.04	100	100	0.43	0.63
13C5-PFHxA	318.9969	318.9968	-0.2	5.21	5.20	-0.01	100	100	0.44	0.50
13C5-PFNA	468.9873	468.9871	-0.4	7.00	6.98	-0.02	100	100	0.55	0.58
13C5-PFPeA	269.0001	269.0000	-0.2	4.34	4.33	-0.01	100	100	0.38	0.53
13C6-PFDA	519.9874	519.9868	-1.2	7.79	7.48	-0.31	100	100	0.50	0.71
13C7-PFUnA	570.9876	570.9871	-0.9	7.96	7.97	0.01	100	97	0.55	0.83
13C8-PFOA	422.0005	422.0004	-0.3	6.47	6.44	-0.03	100	100	0.34	0.67
13C8-PFOS	507.9643	507.9631	-2.4	7.15	7.64	0.49	100	100	0.42	0.96
13C8-PFOSA	506.9803	506.9799	-0.8	8.93	8.94	0.01	100	97	0.42	0.43
13C9-PFNA	473.0007	473.0004	-0.6	7.01	6.97	-0.04	100	100	0.51	0.80
18O2-PFHxS	403.9497	403.9523	6.4	6.68	6.65	-0.03	100	100	0.41	0.62
D3-NMeFOSA	515.9880	515.9872	-1.5	10.10	10.20	0.10	100	93	0.40	0.53
D3-NMeFOSAA	573.9934	573.9932	-0.4	7.51	7.50	-0.01	100	100	0.52	0.83
D5-NEtFOSA	532.0162	532.0155	-1.2	10.40	10.45	0.05	100	93	0.33	0.45
D5-NEtFOSAA	590.0216	590.0212	-0.7	7.73	7.71	-0.02	100	97	0.47	0.85
D7-NMeFOSE	624.0605	624.0595	-1.6	10.00	10.09	0.09	100	97	0.35	0.39
D9-NEtFOSE	640.0887	640.0877	-1.5	10.30	10.36	0.06	100	97	0.39	0.55

247 **Figure S2.** Average abundance of each isotopically-labeled compound broken down by the
 248 sample condition or composition. Error bars represent the standard deviation of the measured
 249 abundance for each isotopically-labeled tracer across the sample condition. Sample conditions
 250 include those with sample matrix (i.e., ground or surface water) that went through sample
 251 preparation (green bars), those that do not have a sample matrix (i.e.,
 252 method/trip/field/equipment blanks and controls) that went through sample preparation (blue
 253 bars) and those that do not have sample matrix and did not go through sample preparation
 254 (laboratory blanks and controls).

255

256 **Figure S3.** Boxplot displaying the percent recovery of isotopically-labeled compounds for all 18
257 study samples. Outliers are shown as open red circles. Gray horizontal bars indicate the typical
258 acceptable range of percent recoveries for targeted analyses of PFAS (70-130%).

259 **Table S12.** Average, minimum, and maximum observed percent recovery of each isotopically-
 260 labeled compound across all 18 study samples. Occurrences of 0% recovery (isotopically-labeled
 261 compound not detected) were excluded in the table below.

Compound	Minimum Percent Recovery	Average Percent Recovery	Maximum Percent Recovery
13C5-PFPeA	11	77	108
13C2-PFDoA	6	78	132
13C4-PFOS	18	83	129
13C4-PFOA	18	85	121
D5-NEtFOSAA	18	86	134
13C7-PFUnA	21	88	132
13C8-PFOA	13	89	138
13C2-PFDA	27	90	124
13C8-PFOS	25	91	353
13C2-8:2FTS	42	91	145
13C6-PFDA	26	91	132
13C5-PFHxA	55	93	131
13C3-HFPO-DA	40	93	116
13C9-PFNA	20	93	124
13C3-PFBS	18	95	130
13C2-4:2FTS	45	97	149
13C2-PFTeDA	50	98	144
D3-NMeFOSAA	12	99	139
13C4-PFHxA	58	99	134
18O2-PFHxS	44	102	128
13C3-PFHxS	46	102	208
13C2-6:2FTS	55	105	145
D9-NEtFOSE	1	106	161
13C5-PFNA	16	107	137
D7-NMeFOSE	11	109	156
13C8-PFOSA	21	110	145
13C2-PFHxA	65	118	324
D3-NMeFOSA	24	144	219
D5-NEtFOSA	25	160	240

262

263 2.2 Native Compounds

264 The detection frequencies and maximal CVs observed for all native compounds across
265 select study samples where they were spiked is listed in **Table S13**. Feature detection frequencies
266 were 100% in samples where native compounds were spiked. Detection frequencies in blanks were
267 generally at 0%, except for 3 compounds: PFOS (100%), N-EtFOSE (43%) and N-MeFOSE
268 (14%). These detections of native compounds in blanks were accounted for in samples using the
269 blank subtraction and MRL filters within INTERPRET NTA processing. For samples where native
270 compounds were spiked the average max CV was 0.47 with a range of 0.33-1.06. This average
271 and range are similar to the values observed for the isotopically-labeled compounds and were
272 found to be acceptable.

273 **Table S13.** Observed detection frequencies and max CVs for native compounds.

Chemical Name	Mass	Observed Mass	Mass Error (PPM)	Retention Time (min)	Observed Retention Time (min)	Retention Time Difference (min)	Detection Frequency in Blanks	Detection Frequency in Spikes	Max CV in Blanks	Max CV in Spikes
PFBA	213.9865	213.9864	-0.36	3.12	3.11	-0.01	0	100	0.00	0.34
PFMPA	229.9814	229.9812	-0.83	3.64	3.64	0.00	0	100	0.00	0.41
3:3 FTCA	242.0178	242.0175	-1.14	3.77	3.86	0.09	0	100	0.00	0.35
PFPeA	263.9833	263.9831	-0.69	4.32	4.33	0.01	0	100	0.00	0.38
PFMBA	279.9782	279.9780	-0.71	4.67	4.63	-0.04	0	100	0.00	0.45
HFPO-DA	285.9851	285.9853	0.74	5.49	5.45	-0.04	0	100	0.00	0.55
NFDHA	295.9731	295.9729	-0.72	5.07	5.09	0.02	0	100	0.00	0.39
PFBS	299.9503	299.9500	-0.90	5.26	5.26	0.00	0	100	0.00	0.33
PFHxA	313.9801	313.9798	-0.92	5.20	5.19	-0.01	0	100	0.00	0.36
PFEESA	315.9452	315.9450	-0.58	5.59	5.61	0.02	0	100	0.00	0.52
4:2 FTS	327.9816	327.9813	-0.82	4.98	4.97	-0.01	0	100	0.00	0.36
5:3 FTCA	342.0114	342.0107	-2.02	5.49	5.52	0.03	0	100	0.00	0.37
PFPeS	349.9471	349.9467	-1.07	6.02	6.02	0.00	0	100	0.00	0.42
PFHpA	363.9769	363.9765	-1.09	5.82	5.86	0.04	0	100	0.00	0.35
ADONA	377.9761	377.9765	0.94	6.01	6.08	0.07	0	100	0.00	0.52
PFHxS	399.9439	399.9435	-0.95	6.65	6.65	0.00	0	100	0.00	0.42
PFOA	413.9737	413.9733	-0.97	6.44	6.40	-0.04	0	100	0.00	0.53
6:2 FTS	427.9752	427.9757	1.21	6.29	6.15	-0.14	0	100	0.00	0.52
7:3 FTCA	442.0050	442.0045	-1.14	6.81	6.80	-0.01	0	100	0.00	0.40
PFHpS	449.9407	449.9404	-0.64	7.14	7.19	0.05	0	100	0.00	0.37
PFNA	463.9705	463.9683	-4.76	6.96	6.95	-0.01	0	100	0.00	0.42
PFOSA	498.9535	498.9529	-1.16	8.91	8.92	0.01	0	100	0.00	0.41
PFOS	499.9375	499.9370	-0.99	7.71	7.68	-0.03	100	100	0.54	0.53
NMeFOSA	512.9691	512.9686	-1.03	10.21	10.20	-0.01	0	100	0.00	0.39
PFDA	513.9673	513.9669	-0.81	7.44	7.45	0.01	0	100	0.00	0.49
NEtFOSA	526.9848	526.9841	-1.29	10.45	10.46	0.01	0	100	0.00	0.33
8:2 FTS	527.9688	527.9684	-0.75	7.25	7.24	-0.01	0	100	0.00	0.46
9Cl-PF3ONS	531.9029	531.9025	-0.67	8.08	8.09	0.01	0	100	0.00	0.56
PFNS	549.9343	549.9339	-0.73	8.13	8.15	0.02	0	100	0.00	0.37
PFUnA	563.9641	563.9622	-3.41	7.91	7.95	0.04	0	100	0.00	1.06
NMeFOSAA	570.9746	570.9742	-0.71	7.59	7.56	-0.03	0	100	0.00	0.93
NEtFOSAA	584.9903	584.9896	-1.12	7.61	7.59	-0.02	0	100	0.00	0.76
PFDS	599.9311	599.9307	-0.68	8.59	8.60	0.01	0	100	0.00	0.53

PFDoA	613.9609	613.9601	-1.35	8.36	8.39	0.03	0	100	0.00	0.79
NMeFOSE	617.0158	617.0159	0.20	10.11	10.11	0.00	14	100	1.20	0.36
NEtFOSE	631.0311	631.0314	0.41	10.38	10.38	0.00	43	100	0.09	0.45
11Cl-PF3OUDS	631.8965	631.8958	-1.06	8.98	8.98	0.00	0	100	0.00	0.37
PFTrDA	663.9577	663.9569	-1.26	8.83	8.83	0.00	0	100	0.00	0.46
PFDoS	699.9247	699.9239	-1.17	9.47	9.47	0.00	0	100	0.00	0.40
PFTeDA	713.9545	713.9539	-0.90	9.27	9.26	-0.01	0	100	0.00	0.44

274

275 **3. INTERPRET NTA QA/QC Processing**

276

277 *3.1 Summary of INTERPRET NTA Outputs*

278 INTERPRET NTA was used to perform QA/QC filtering on the MS¹ feature list
279 generated by mzmine. Summary metrics for each of the outputs produced by INTERPRET NTA
280 are given in **Table S14**. A heatmap displaying the processing outcomes for all features across all
281 study samples is shown in **Figure S4**. This heatmap demonstrates that QA/QC samples (blanks,
282 control, and method spike) had few features compared to pooled matrix calibrants and study
283 samples. The decision trees displayed in **Figure S5** and **S6** display the fate of occurrences and
284 features across each QA/QC step (e.g., replicate, CV, and MRL checks), respectively. These
285 trees are summarized in **Table S15** and show that 11% of all features at 48% of all occurrences
286 were filtered during INTERPRET NTA QA/QC processing.

287

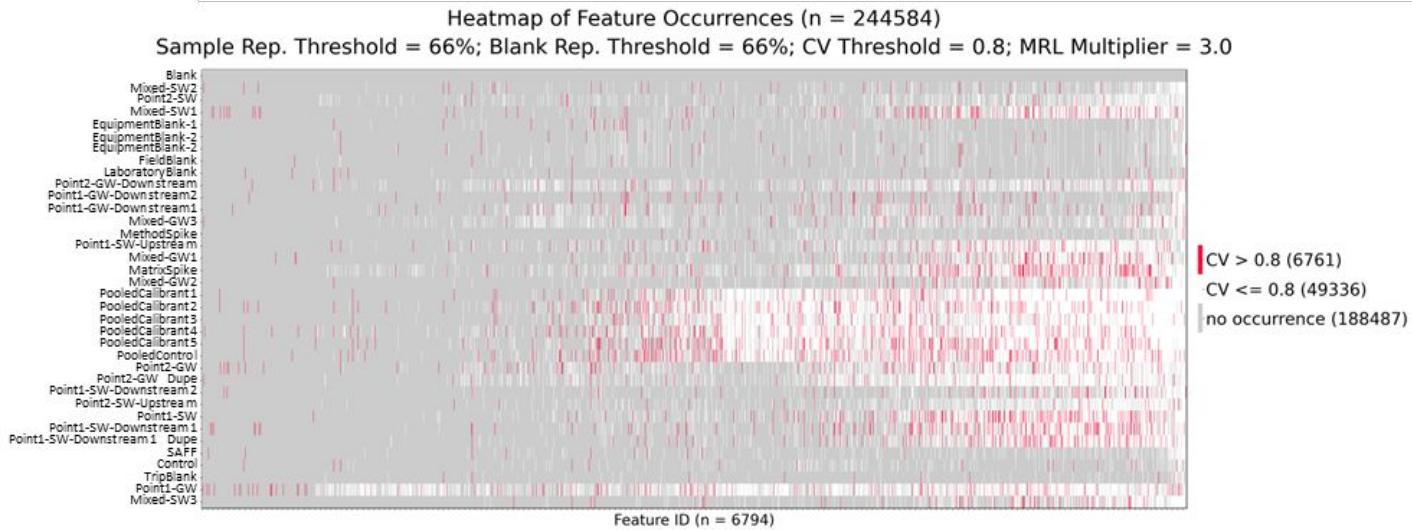
288

289 **Table S14.** Summarized metrics from INTERPRET NTA QA/QC processing and outputs.

INTERPRET NTA Output	Summary Quality Metrics
Isotopically-labeled Compound Summary Tables ¹	$ \text{mass error} =0.1\text{-}6.4 \text{ ppm}$ $ \text{RT error} =0.0\text{-}0.49 \text{ min}$ max CV=0.33-1.22
CV Scatter Plots ²	1.2% of unfiltered isotopically-labeled compound occurrences above CV=0.8 threshold
Run Sequence Plots ³	Minor decrease in abundance across sequence; specific sample outliers
Occurrence Decision Tree ⁴	48% of unfiltered occurrences removed
Feature Decision Tree ⁴	11% of unfiltered features removed
Confusion Matrices ⁵	TPR=97-100%; TNR=38-100%; FNR=0-5%; FPR=0-62%

290
291
292
293
294
295
296

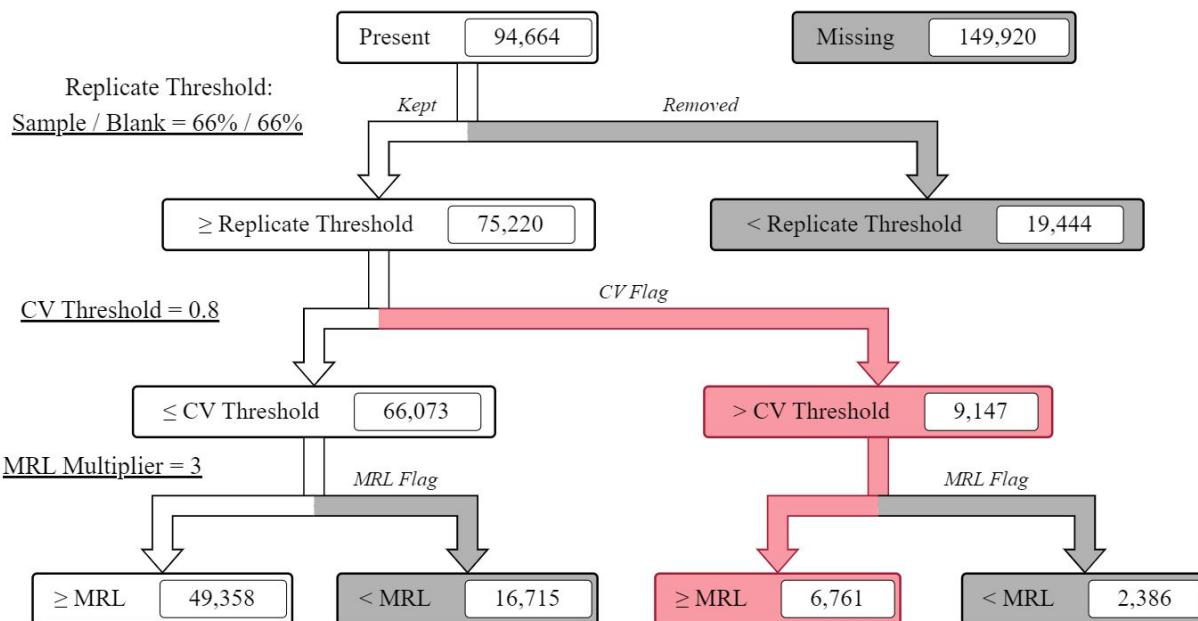
¹Values from Table S11


²Values calculated from Figure S7

³Qualitative interpretation from Figure S8

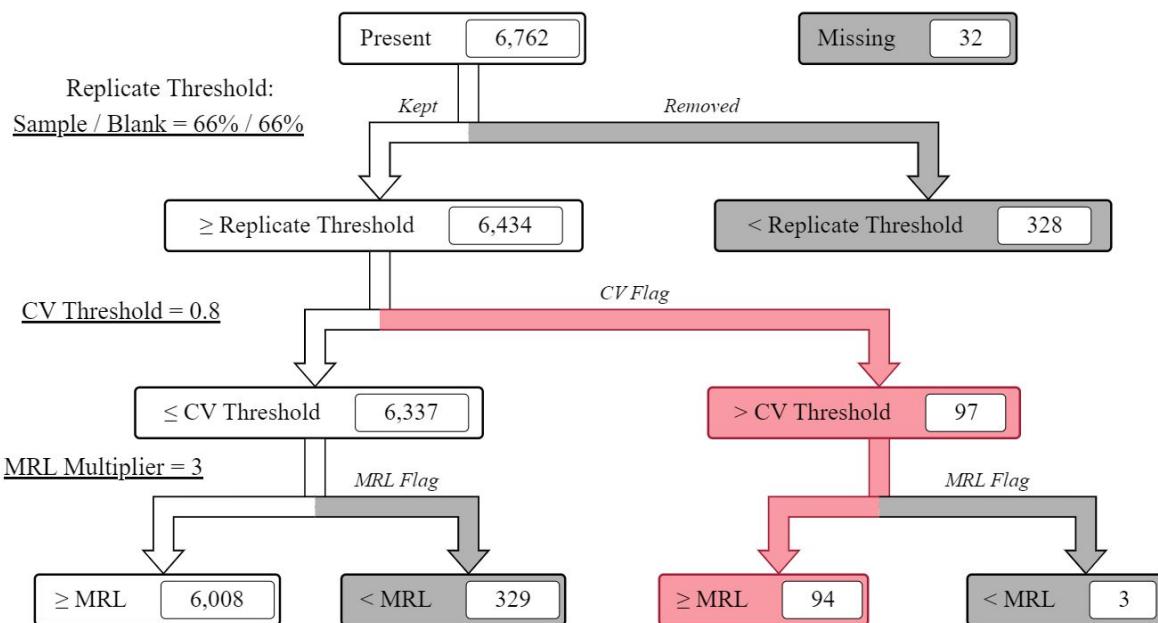
⁴From Table S15 and as represented in Figure S5 (occurrences) and Figure S6 (features)

⁵Values from SI Section 3.1 and 3.2


298 **Figure S4.** Heatmap displaying the processing outcomes all features across all study samples.
299 Features are represented across the x-axis and samples along the y-axis. Each cell represents the
300 potential occurrence of a feature in that sample and the cell is shaded to denote the data quality
301 decision for that occurrence. Cells shaded gray are non-detect (either those that had no
302 occurrence in the input detection matrix or those found to be below the calculated MRL). Cells
303 shaded red are occurrences where the CV of the measured abundance across the sample
304 replicates exceeded the threshold of 0.8. Cells shaded white are those where the feature was
305 reproducibly detected above the MRL with a CV less than 0.8.

306

307 **Figure S5.** Decision tree recording the fate of occurrences for each filtering step during
 308 INTERPRET NTA processing. For each filter the threshold used is shown in the underlined text
 309 to the left and the number of occurrences either kept, removed, or flagged are shown in the
 310 boxes. Boxes colored white represent occurrences that remain in the final output, those colored
 311 gray represent occurrences that are removed from the final output, and those colored red
 312 represent occurrences that are optionally removed or flagged in the final output.


Occurrences A

313

314 **Figure S6.** Decision tree recording the fate of features for each filtering step during
 315 INTERPRET NTA processing. For each filter the threshold used is shown in the underlined text
 316 to the left and the number of features either kept, removed, or flagged are shown in the boxes.
 317 Boxes colored white represent features that remain in the final output, those colored gray
 318 represent features that are removed from the final output, and those colored red represent
 319 features that are optionally removed or flagged in the final output.

Features A

320

321 **Table S15.** Feature and occurrence decision tree counts for each filtering step for the MS1-level
 322 feature list processed with INTERPRET NTA.
 323

Features			
Filter	Number of features kept	Number of features removed	Percentage of features removed
Incoming	6,762	0	0
Replicate Threshold	6,434	328	5
CV Threshold	6,337	97	2
MRL Threshold	6,008	329	5
Total	6,008	754	11
Occurrences			
Filter	Number of occurrences kept	Number of occurrences removed	Percentage of occurrences removed
Incoming	94,664	0	0
Replicate Threshold	75,220	19,444	21
CV Threshold	66,073	9,147	12
MRL Threshold	49,358	16,715	25
Total	49,358	45,306	48

324
 325

326 *3.2 Isotopically-labeled compound performance*

327 A tracer file containing both the extracted and non-extracted isotopically-labeled
 328 compounds was prepared and input to track the performance of these spiked chemicals across all
 329 study samples. Performance of isotopically-labeled compounds were tracked using (1) CV scatter
 330 plots displaying mean abundance versus CV, (2) run sequence plots displaying tracer abundance
 331 across the analytical runs, and (3) confusion matrices to examine true positive, false positive, true
 332 negative, and false negative rates.

333

334 3.2.1 A scatterplot displaying the mean abundance against the measured CV of blanks and study
 335 samples is shown in **Figure S7**. Detections of isotopically-labeled compounds (tracers) are
 336 displayed as red circles and other detections are shown as open circles. The right scatterplot show
 337 that as mean abundance decreases the CV increases for tracer chemicals, which is expected. Very
 338 few tracer occurrences, 0% in blanks and 1% in samples, had CVs measured above the set CV
 339 threshold of 0.8.

340

341 3.2.2 Run sequence plots displaying tracer abundance based on sample type (blank or sample) for
 342 all isotopically-labeled compounds are shown in **Figure S8**. The run sequence order goes from the
 343 first injection in batch #1 through the final injection in batch #3. From these plots we can see each
 344 isotopically-labeled compound has a slight decrease in abundance across the run sequence in both
 345 the blanks and the study samples. This temporal effect appears systematic and may be the result
 346 of instrument sensitivity decreasing over time, but (1) as this decrease is relatively small, (2)
 347 injection replicates were randomized, and (3) the reported CVs are not artificially high, run
 348 sequence corrections were not implemented.

349

350 3.2.3 The performance of isotopically-labelled compounds was also assessed using confusion
 351 matrices, according to Sobus *et al.* (2025).² Confusion matrix statistics are broken down below at
 352 both the feature and occurrence level in the input detection matrices and in INTERPRET NTA-
 353 filtered final occurrence matrix.

354

355

Input Detection Matrices

356 False positive rates were 0% for both features and detections in the input detection
 357 matrices. False negative rates were low at 3.33% and 5.09% for features and detections,
 358 respectively. For features, the 3.33% false negative rate is due to the isotopically-labeled
 359 compound, 13C4-PFBA, which was not detected in any sample, as described above. For detections
 360 the false negative rate of 5.09% is due to all missing detection for 13C4-PFBA (n=125) and other
 361 missing detections (n=66).

362

363

Unfiltered Features:

		Expected to map to isotopically-labeled compounds		Sum
		Yes	No	
Mapped to isotopically- labeled compounds	Yes	29	0	29
	No	1	6,765	6,766
	Sum	30	6,765	6,795

364

365 $TPR = (29/30) \times 100 = 96.67\%$
 366 $FNR = (1/30) \times 100 = 3.33\%$
 367 $TNR = (6,765/6,765) \times 100 = 100\%$
 368 $FPR = (0/6,765) \times 100 = 0\%$

369
 370 **Detections:**

		Expected to map to isotopically-labeled compounds		Sum
		Yes	No	
Mapped to isotopically-labeled compounds	Yes	3,560	0	3,560
	No	191	330,769	330,960
	Sum	3,751	330,769	334,520

372
 373 $TPR = (3,560/3,751) \times 100 = 94.91\%$
 374 $FNR = (191/3,751) \times 100 = 5.09\%$
 375 $TNR = (330,769/330,769) \times 100 = 100\%$
 376 $FPR = (0/330,769) \times 100 = 0\%$

377
 378 **Final Occurrence Matrix**

379 False negative rates for both features and occurrences in the final occurrence matrix cannot
 380 be calculated from isotopically-labeled tracers, as they are not expected in the final occurrence
 381 matrix due to the blank subtraction step performed by INTERPRET NTA. As the method blank
 382 contained concentrations of spiked isotopically-labeled compounds at equal levels as as other
 383 samples the response of these compounds in samples should be similar to what is observed in the
 384 blank, and accounted for during blank subtraction.

385 False positive rates were high at 62.07% for features in the final occurrence matrix. This is
 386 due to 18 isotopically-labeled compounds that were present in the final occurrence matrix that
 387 should have been removed during blank subtraction. False positive rates in the occurrences of the
 388 final occurrence matrix however were low at 1.63%. The reason for the disparity in false positive
 389 rates between features and occurrences becomes apparent when examining the final occurrence
 390 matrix. Manual review highlighted that half (n=9) of the isotopically-labeled features present in
 391 the final occurrence matrix had a measurement in just a single sample. The remaining 9 features
 392 were typically detected in few samples, between 6-34%. The 58 occurrences of isotopically-
 393 labeled compounds in the final occurrence matrix were found primarily in other study blanks
 394 (n=14) and control samples (n=40) rather than in true study samples (n=14). The presence of
 395 isotopically-labeled compounds present in these other blanks and control samples is due to their
 396 increased response in matrix-free or low matrix conditions relative to the method blank, which was
 397 used to perform blank subtraction.

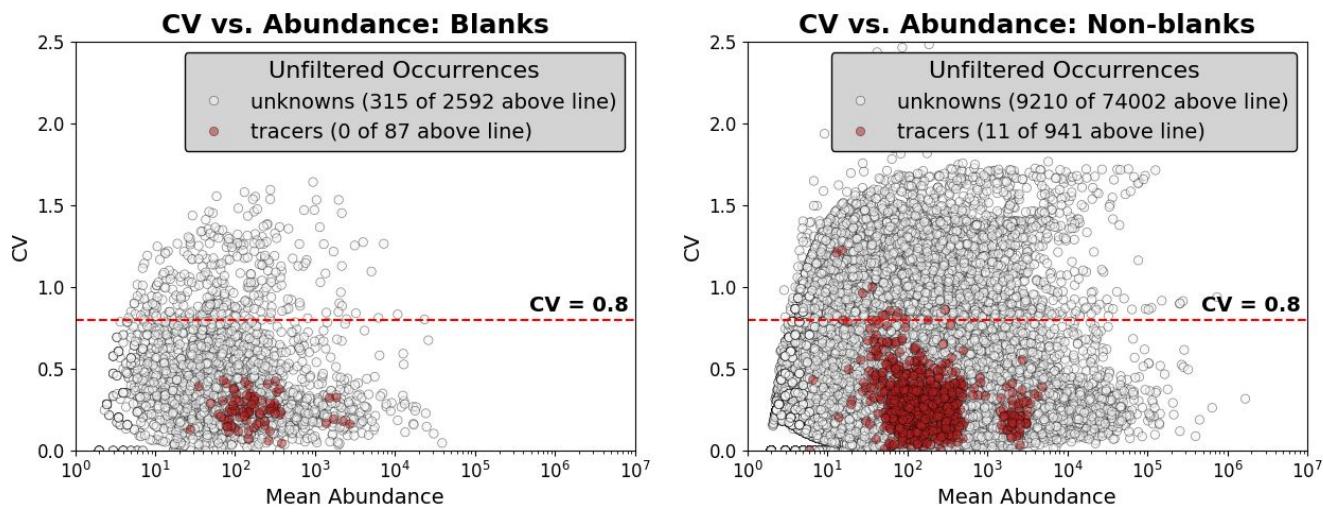
398
 399 **Filtered Features:**

	Expected to map to isotopically-labeled compounds	

		Yes	No	Sum
Mapped to isotopically-labeled compounds	Yes	NA	18	18
	No	NA	11	11
	Sum	NA	29	29

402
403
404
405
406
407
408
409

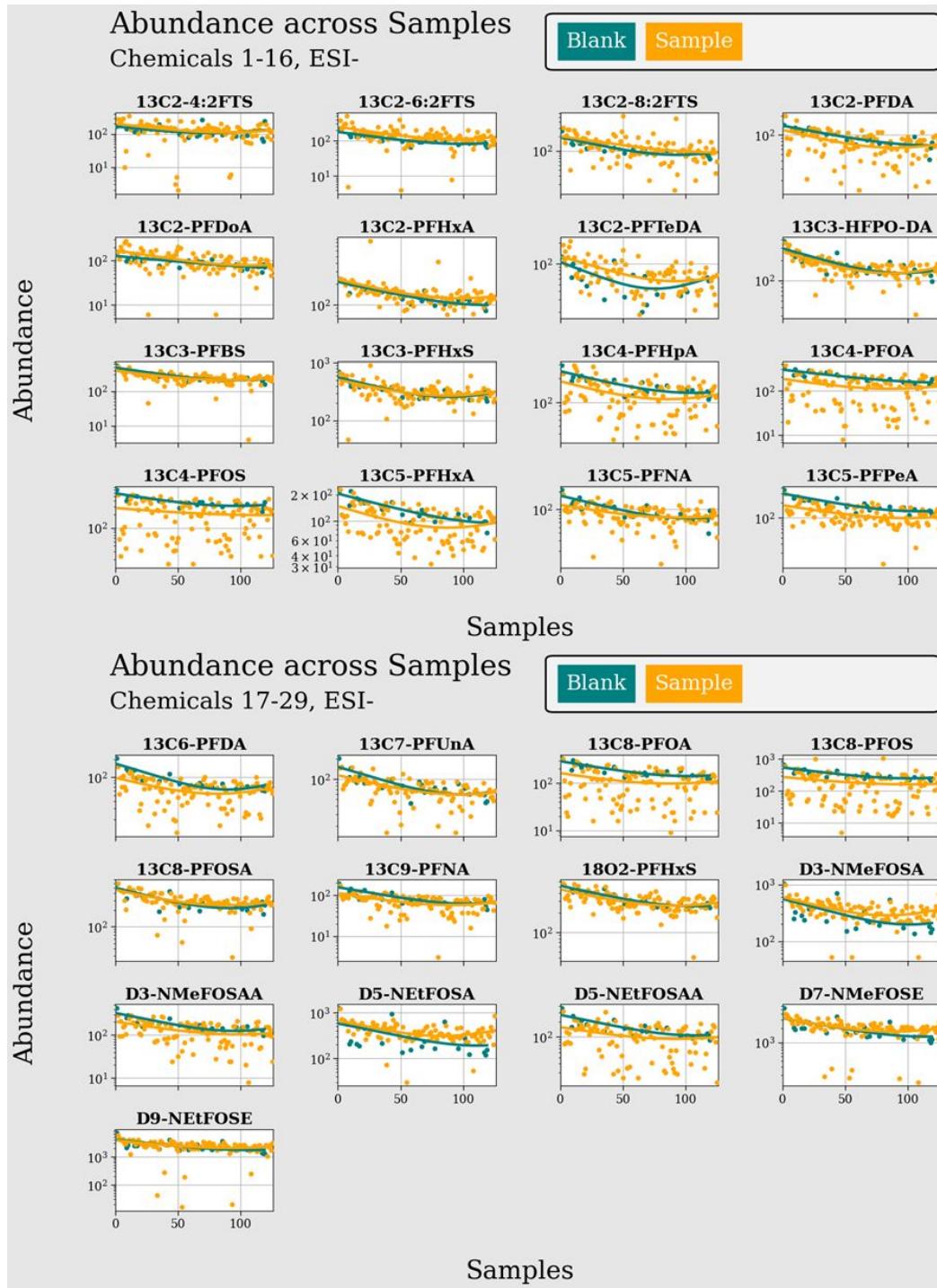
$$\begin{aligned} \text{TPR} &= NA \\ \text{FNR} &= NA \\ \text{TNR} &= (11/29) \times 100 = 37.93\% \\ \text{FPR} &= (18/29) \times 100 = 62.07\% \end{aligned}$$


Occurrences:

		Expected to map to isotopically-labeled compounds		
		Yes	No	Sum
Mapped to isotopically-labeled compounds	Yes	NA	58	58
	No	NA	3,502	3,502
	Sum	NA	3,560	3,560

410
411
412
413
414
415
416

$$\begin{aligned} \text{TPR} &= NA \\ \text{FNR} &= NA \\ \text{TNR} &= (3,502/3,560) \times 100 = 98.37\% \\ \text{FPR} &= (58/3,560) \times 100 = 1.63\% \end{aligned}$$


418 **Figure S7.** CV scatter plot generated by INTERPRET NTA. These are displayed as the mean
419 abundance versus the measured CV in study blanks (left) and study samples (right). Detections
420 of isotopically-labeled compounds are shown as red circles (tracers) and other detections are
421 shown as open circles.

422

423

424 **Figure S8.** Run sequence plots of isotopically-labeled compounds generated by INTERPRET
 425 NTA. These are displayed as the run sequence position versus the measured abundance. Points
 426 on each plot and the trendlines are colored based on their grouping, either study blanks (teal) or
 427 study samples (yellow-orange).

428

429

430 *3.3 Native compound performance*

431 A tracer file containing just the native compounds was prepared and input to track the
 432 performance of spiked native compounds across select study samples. Performance of native
 433 compounds were tracked using (1) CV scatter plot displaying mean abundance versus CV and (2)
 434 confusion matrices to examine true positive, false positive, true negative, and false negative rates.
 435

436 3.3.2 A scatterplot displaying the mean abundance against the measured CV of study blanks and
 437 samples is shown in **Figure S9**. Detections of native compounds (tracers) are displayed as red
 438 circles and other detections are shown as open circles. The right scatterplot displays as mean
 439 abundance decreases the CV increases for native compounds, which is expected for these data.
 440 Few native occurrences, 1.6% in samples, had CVs measured above the set CV threshold of 0.8.
 441

442 3.3.3 The performance of native compounds was also assessed using the confusion matrices,
 443 according to Sobus *et al.* (2025).² These are broken down below at both the feature and
 444 occurrence levels based on the input detection matrices and the INTERPRET NTA filtered final
 445 occurrence matrix. The examination of false positive rates and false negative rates are examined
 446 only in samples where native compounds were spiked at sufficient levels and expected to be
 447 detectable. These samples included QA/QC controls (standard in neat solvent, method spike, and
 448 matrix spike) and three pooled matrix calibrants (for the mid-range and higher concentrations).
 449

450 **Input Detection Matrices**

451 False negative and false positive rates were 0% for both features and detections in the input
 452 detection matrices. All native compounds were measured in the samples and injections where they
 453 were spiked at sufficient levels.
 454
 455

456 **Unfiltered Features:**

		Expected to map to native compounds		Sum
		Yes	No	
Mapped to isotopically-labeled compounds	Yes	40	0	40
	No	0	6,754	6,754
	Sum	40	6,754	6,794

457
 458
$$\text{TPR} = (40/40) \times 100 = 100\%$$

459
$$\text{FNR} = (1/30) \times 100 = 0\%$$

460
$$\text{TNR} = (6,754/6,754) \times 100 = 100\%$$

461
$$\text{FPR} = (0/6,754) \times 100 = 0\%$$

462 **Detections:**
 463
 464

	Expected to map to native compounds	

		Yes	No	Sum
Mapped to isotopically-labeled compounds	Yes	1,040	0	1,040
	No	0	79,409	79,409
	Sum	1,040	79,409	80,449

466

467
$$TPR = (1,040/1,040) \times 100 = 100\%$$

468
$$FNR = (0/1,040) \times 100 = 0\%$$

469
$$TNR = (79,409/79,409) \times 100 = 100\%$$

470
$$FPR = (0/79,409) \times 100 = 0\%$$

471

472

473

474

475

Final Occurrence Matrix

476 False positive rates for both features and occurrences in the final occurrence matrix cannot
 477 be calculated for native spiked chemicals as they are expected in the final occurrence matrix due
 478 to their intentional spiking.

479 False negative rates were 0% and 0.42% for features and occurrences in the final
 480 occurrence matrix, respectively. Only one occurrence of a single feature was not present in the
 481 final occurrence matrix. Review of this feature using the Decision Documentation sheet produced
 482 in the INTERPRET NTA output showed this occurrence was removed during INTERPRET NTA
 483 filtering in a pooled matrix calibrant sample due to the measured CV exceeding the set threshold
 484 of 0.8. The variability of peak areas for this occurrence were confirmed in both the input detection
 485 matrix and in the extracted ion chromatogram of the feature which showed poor reproducibility in
 486 peak shape and area in that sample.

487

488

489

Filtered Features:

		Expected to map to native compounds		
Mapped to isotopically-labeled compounds	Yes	Yes	No	Sum
	No	0	NA	0
	Sum	40	NA	40

490

491
$$TPR = (40/40) \times 100 = 100\%$$

492
$$FNR = (0/40) \times 100 = 0\%$$

493
$$TNR = NA$$

494
$$FPR = NA$$

495

496

497

Occurrences:

		Expected to map to native compounds		
		Yes	No	
Mapped to isotopically-labeled compounds	Yes	239	NA	239
	No	1	NA	1
	Sum	240	NA	240

498

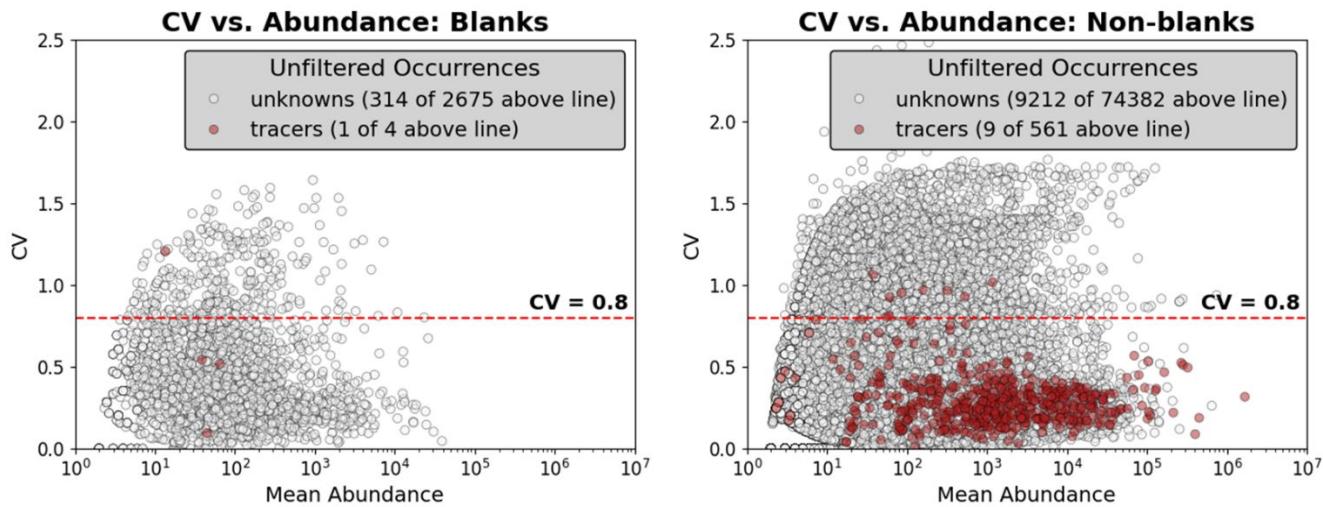
499

500

501

502

503


$$\text{TPR} = (239/240) \times 100 = 99.58\%$$

$$\text{FNR} = (1/240) \times 100 = 0.42\%$$

$$\text{TNR} = \text{NA}$$

$$\text{FPR} = \text{NA}$$

504 **Figure S9.** CV scatter plot generated by INTERPRET NTA. These are displayed as the mean
505 abundance versus the measured CV in study blanks (left) and study samples (right). Detections
506 of native compounds are shown as red circles (tracers) and other detections are shown as open
507 circles.

508

509

510 **4. Identified PFAS and their Fate and Transport**
511

512 **4.1 Dilution Calculations**

513 The concentrations of chemicals measured in both groundwater at and downstream to
514 point source #1 (n=24) determined in Pu *et al.* (2025), were used to estimate the rates of dilution
515 from upstream to downstream.³ First, the distribution of dilution factors from the point source
516 (Point1-GW) to each downstream site (Point1-GW-Downstream1 and Point1-GW-
517 Downstream2) were compared with a Mann-Whitney U test to determine if dilution factors were
518 comparable between each downstream site. A boxplot of the dilution factors measured at each
519 site is shown in **Figure S12**. Dilution factors were found to be comparable ($p = 0.101$). The
520 dilution factors for each site were then combined to create one distribution of dilution factors
521 (**Figure S13**). The median (50th percentile) and 2.5th percentiles were taken from this distribution
522 and were found to be 639-fold and 55-fold, respectively.

523

524 **4.2 Estimating Limits of Detection**

525 Limits of detection for the PFAS measured were then estimated to identify the minimum
526 detectable concentrations that would need to be present in sample extracts. First, the
527 concentrations measured for all PFAS as determined in Pu *et al.* (2025), across all surface and
528 groundwater samples (excluding SAFF, n=15) were plotted as a distribution, as shown in **Figure**
529 **S14**. The 5th percentile of this distribution was then taken to simulate an approximate limit of
530 detection for the PFAS identified here. This gave a limit of detection (pre-enrichment) of 0.003
531 ng/mL, or a post-enrichment, in-vial concentration of 0.255 ng/mL.

532

533 **4.3 Predicting Concentrations Downstream**

534 The estimated dilution factors and limit of detection was then applied to the
535 concentrations measured of PFAS identified at Point1-GW that were not measured at any
536 downstream site (n=176). When using the 50th percentile dilution factor of 639 \times and an
537 estimated limit of detection of 0.003 ng/mL, approximately 95% of the concentrations measured
538 at Point1-GW would fall below the limit of detection if transported downstream, as shown in
539 **Figure S13**. When using the 2.5th percentile dilution factor of 55 \times and an estimated limit of
540 detection of 0.003 ng/mL, approximately 56% of the concentrations measured at Point1-GW
541 would fall below the limit of detection if transported downstream, as shown in **Figure S15**.

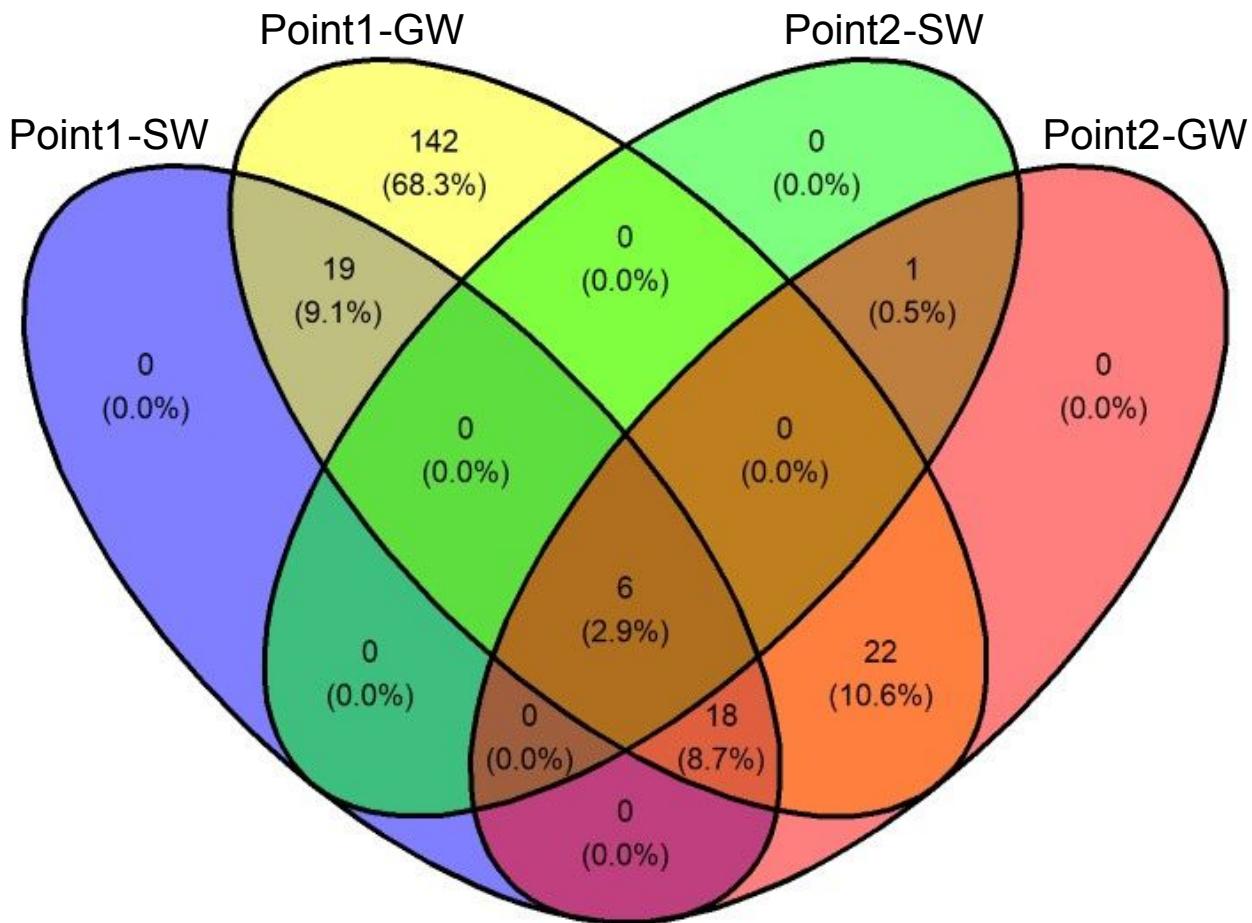
542

543 **Table S16.** PFAS identified at a Schymanski *et al.* (2014) scale confidence level 1 with their
 544 observed detection frequencies across all study samples (n=18).
 545

LEVEL 1 PFAS	DETECTION FREQUENCY IN STUDY SAMPLES
PFOS	89
PFOA	89
PFHpA	78
PFHxA	78
PFHxS	78
PFBA	78
PFPeA	72
PFBS	67
PFHpS	61
PFPeS	61
PFNA	33
PFDA	33
NEtFOSAA	28
PFOSA	22
6:2 FTS	17
PFMBA	11
PFMPA	11
NMeFOSAA	11
PFNS	6
5:3 FTCA	6
PFDS	6
PFUnA	6
8:2 FTS	6
PFEESA	6
3:3 FTCA	6
PFDOA	6
HFPO-DA	6
4:2 FTS	6
ADONA	6
NFDHA	6
NEtFOSE	6
NMeFOSE	6

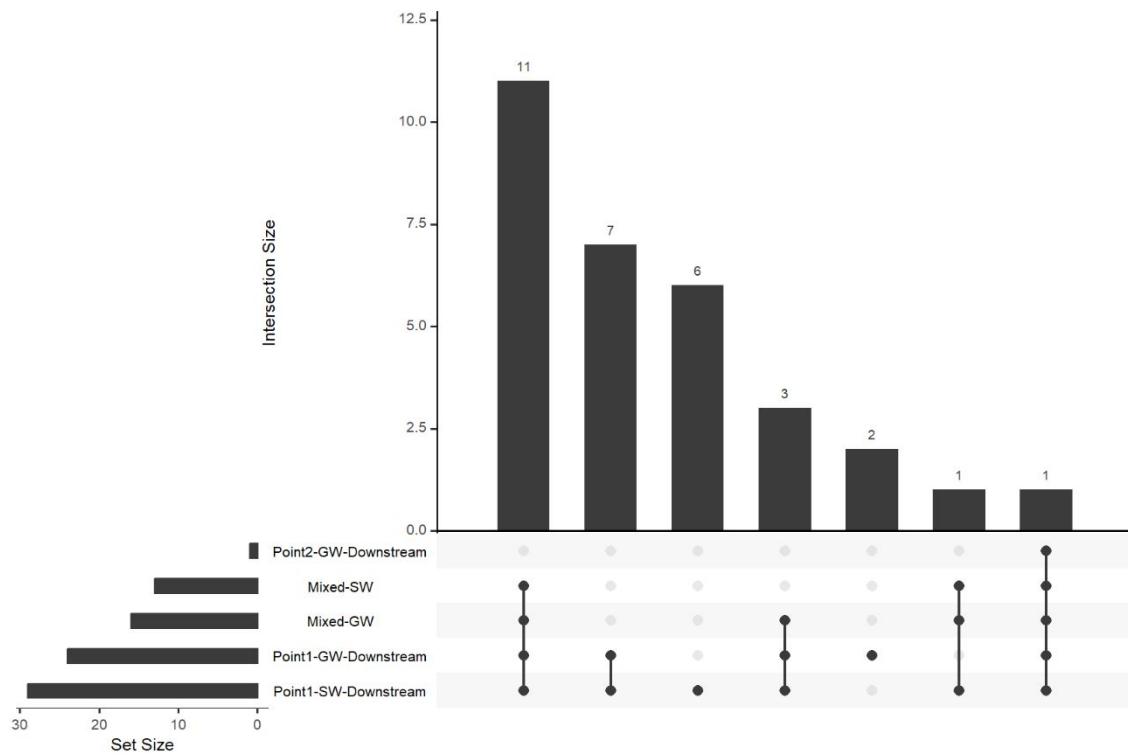
546
 547

548 **Table S17.** Homologous series identification across all study samples.


Series Number	PFAS Subclass	Level of Fluorination	Number of Carbons Observed in Series	Representative Formula	Representative SMILES
1	Perfluorinated sulfonic acids	Perfluorinated	C1-C10	C8HF17O3S	OS(=O)(=O)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)F
2	Polyfluorinated sulfonic acids	Polyfluorinated	C3-C11	C8H2F16O3S	OS(=O)(=O)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)F
3	Polyfluorinated sulfonic acids	Polyfluorinated	C7-C8, C10	C8H3F15O3S	OS(=O)(=O)CC(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)F
4	Polyfluorinated sulfonic acids	Polyfluorinated	C6, C8, C10	C8H5F13O3S	OS(=O)(=O)CCC(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)F
5	Unsaturated sulfonic acid	Unsaturated	C4, C11-C12	C12HF23O3S	OS(=O)(=O)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)F
6	Polyfluorinated sulfonic acids	Unsaturated + H substituted	C4-C11	C8H2F14O3S	OS(=O)(=O)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)F
7	Chlorinated sulfonic acids	Perfluorinated	C6, C8	C8HC1F16O3S	OS(=O)(=O)C(F)(Cl)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)F
8	Keto sulfonic acids	Perfluorinated	C4-C11	C8HF15O4S	OS(=O)(=O)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)F
9	Ether sulfonic acid	Perfluorinated	C3-C9	C8HF17O4S	OS(=O)(=O)C(F)(F)C(F)(F)OC(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)F
10	Ether sulfonic acid	Polyfluorinated	C6-C9	C8H7F11SO4	FC(C(F)C(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)OCS(=O)(=O)O
11	Ether sulfonic acid	Polyfluorinated	C8-C10	C8H8F10SO4	FC(C(F)OCS(=O)(=O)O)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)F
12	Ether sulfonic acid	Unsaturated	C6-C11	C8HF13O4S	F/C(=C(F)C(F)(F)C(F)(F)OC(F)(F)S(=O)(O)=O)C(F)=C(\F)C(F)(F)F
13	Ether sulfonic acid	Unsaturated	C8-C11	C8HF13O5S	F/C(=C(F)C(F)(F)C(F)(F)C(F)(F)OC(F)(F)OC(F)(F)S(=O)(O)=O
14	Polyfluorinated hydroxy sulfonic acid	Polyfluorinated	C5-C6, C8-C9	C8H5F13O4S	OC(CC(F)C(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)S(O)(=O)=O
15	Perfluorinated sulfinic acids	Perfluorinated	C3-C5, C7-C8	C8HF17O2S	OS(=O)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)F
16	Cyclic sulfonic acid	Unsaturated	C4-C12	C8HF15O3S	FC1(C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C1(F)F)S(=O)(=O)O
17	Bifunctional sulfonic acid	Perfluorinated	C7-C15	C8H2F16O6S2	FC(F)(C(F)C(F)C(F)(F)C(F)(F)S(=O)(=O)O)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)S(=O)(=O)O
18	Bifunctional sulfonic acid	Polyfluorinated	C8-C15	C8H3F15O6S2	FC(S(O)(=O)=O)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)S(=O)(=O)O
19	Bifunctional sulfonic acid	Unsaturated	C9-C16, C18, C20	C9H2F16O6S2	O=S(O)(=O)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)S(=O)(=O)O
20	Bifunctional sulfonic and carboxylic acid	Perfluorinated	C5, C7-C12, C14-C15	C8H2F14O5S	FC(F)(C(=O)O)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)S(=O)(O)=O
21	Perfluorinated carboxylic acids	Perfluorinated	C3-C12	C8HF15O2	OC(=O)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)F
22	Polyfluorinated carboxylic acid	Polyfluorinated	C4-C8	C8H2F14O2	OC(=O)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)F
23	Polyfluorinated carboxylic acid	Polyfluorinated	C5-C8	C8H3F13O2	OC(=O)CC(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)F
24	Polyfluorinated carboxylic acid	Polyfluorinated	C6-C8	C8H5F11O2	OC(=O)CCC(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)F
25	Polyfluorinated carboxylic acid	Unsaturated + H substituted	C5-C8	C8H2F12O2	OC(=O)C=C(\F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)F
26	Ether carboxylic acid	Unsaturated	C5-C12	C8HF13O3	OC(=O)C(F)(F)OC(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)F
27	Ether carboxylic acid	Polyfluorinated	C5-C8	C8H3F13O3	OC(=O)COC(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)F
28	Ether carboxylic acid	Perfluorinated	C4-C5, C7-C11	C8HF15O3	OC(=O)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)OC(F)(F)C(F)(F)F
29	Sulfonamides and Sulfonamidos	Perfluorinated	C5-C11	C8H4F13NO4S	OC(=O)CNS(=O)(=O)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)F
30	Sulfonamides and Sulfonamidos	Perfluorinated	C4-C7	C6H6F9NO2S	CCNS(=O)(=O)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)F
31	Sulfonamides and Sulfonamidos	Perfluorinated	C3-C8	C8H2F17NO2S	NS(=O)(=O)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)F

32	Sulfonamides and Sulfonamidos	Perfluorinated	C6-C12	C12H8F17NO4S	CCN(CC(O)=O)S(=O)(=O)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)F
33	Sulfonamides and Sulfonamidos	Perfluorinated	C8-C11	C9H10F9NO4S	CCCN(CC(O)=O)S(=O)(=O)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)F

549


550

551 **Figure S10.** Venn diagram displaying the relationship of 208 PFAS that were identified in the
552 ground and surface waters at each point source. Point source #1 is the Oakdale Disposal Site
553 (ODS) and point source #2 is the Washington County Landfill (WCL). Groundwater is
554 abbreviated as “GW” and surface water is abbreviated as “SW”.

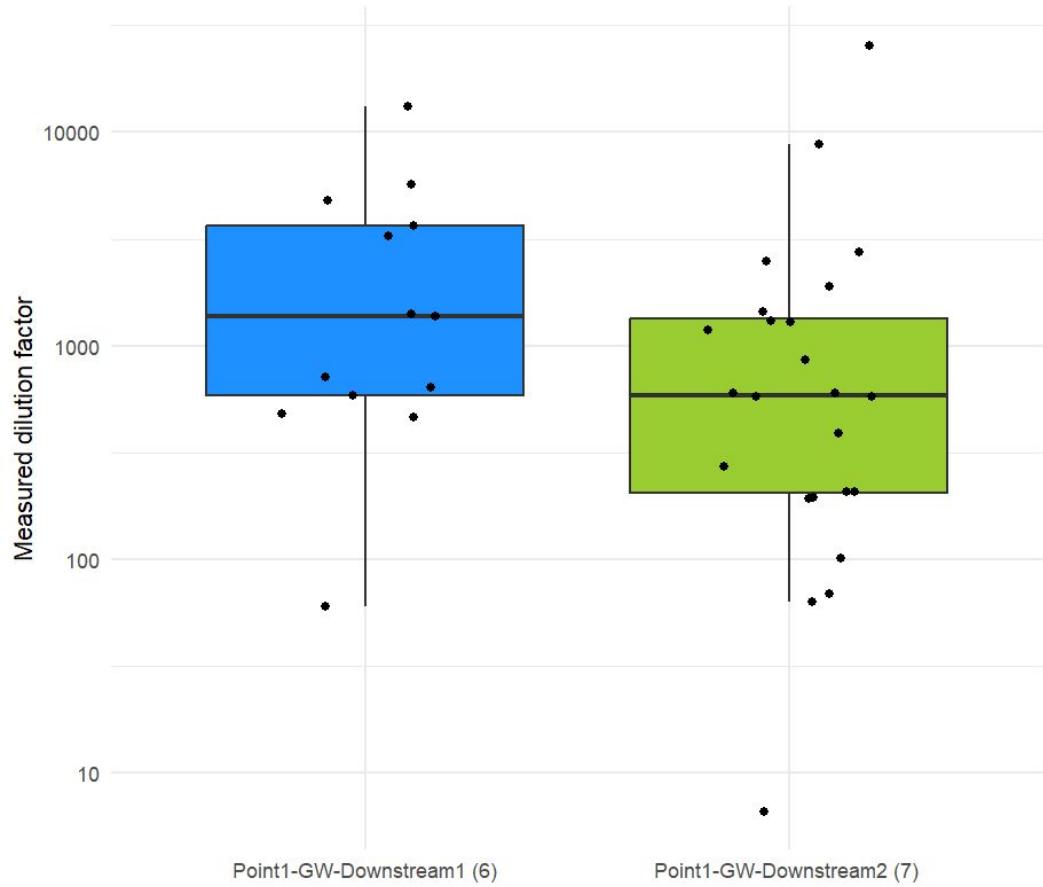
555
556

557 **Figure S11.** UpSet plot showing the relationship of 33 PFAS measured at one or more
558 downstream location(s). Sites with more than one downstream location (e.g., Mixed-GW1,
559 Mixed-GW2, and MixedGW3) were combined here.

560

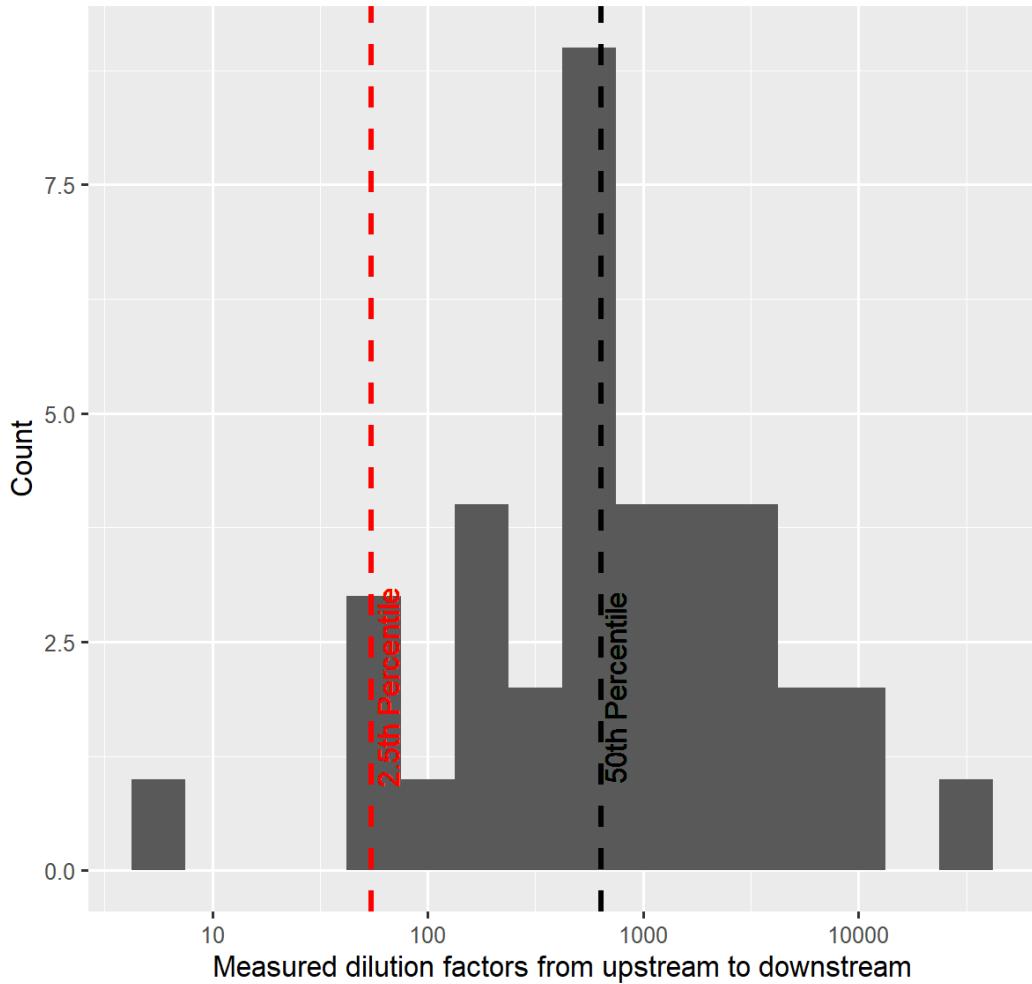
561 **Table S18.** Homologous series and individual PFAS measured in at least one downstream
 562 ground or surface water sample.

Series Number	PFAS Subclass or Name	Level of Fluorination	Number of Carbons Observed in Series Measured Downstream	Representative Formula
1	Perfluorinated sulfonic acids	Perfluorinated	C3-8	C8HF17O3S
2	Polyfluorinated sulfonic acids	Polyfluorinated	C8-C10	C8H2F16O3S
3	Polyfluorinated sulfonic acids	Polyfluorinated	C8	C8H3F15O3S
8	Keto sulfonic acids	Perfluorinated	C8, C10	C8HF15O4S
9	Ether sulfonic acid	Perfluorinated	C8	C8HF17O4S
19	Bifunctional sulfonic acid	Unsaturated	C12, C14, C16	C9H2F16O6S2
21	Perfluorinated carboxylic acids	Perfluorinated	C3-C10	C8HF15O2
22	Polyfluorinated carboxylic acid	Polyfluorinated	C8	C8H2F14O2
23	Polyfluorinated carboxylic acid	Polyfluorinated	C8	C8H3F13O2
28	Ether carboxylic acid	Perfluorinated	C8, C9	C8HF15O3
31	Sulfonamides and Sulfonamidos	Perfluorinated	C3-C4, C8	C8H2F17NO2S
	N-Methyl-N-(2-hydroxyethyl)perfluorooctanesulfonamide	Perfluorinated		C11H8F17NO3S
	N-Ethyl-N-(2-hydroxyethyl)perfluorooctane sulfonamide	Perfluorinated		C12H10F17NO3S
	2-(Difluoromethyl)-4-(2-methylpropyl)-5-[(methylthio)carbonyl]-6-(trifluoromethyl)-3-pyridinecarboxylic acid	Polyfluorinated		C14H14F5NO3S


563

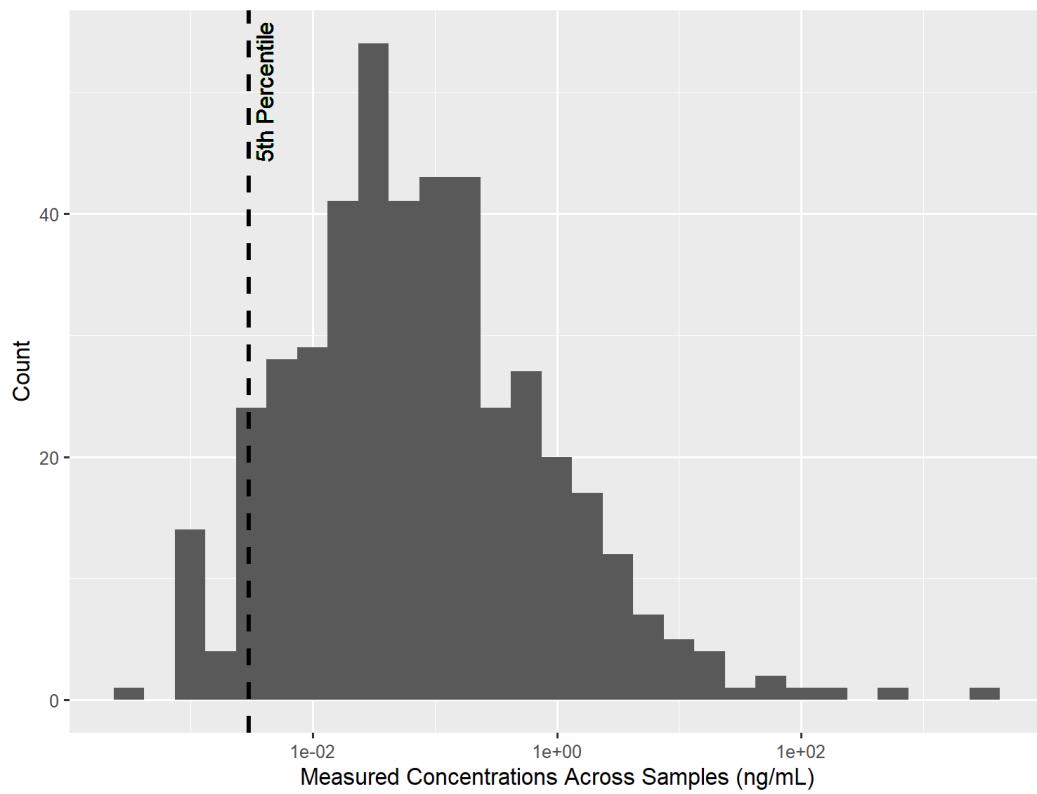
564 **Table S19.** Transformation pathways and products identified using the EPA Chemical Transformation Simulator (CTS) tool with the
 565 PFAS environmental reaction library. Six homologous series and four individual PFAS identified were found to have at least one
 566 transformation product/pathway identified below.

Feature ID	Series Number	Final DTXSID or CAS-RN	Formula	SMILES	CTS Pathways	CTS products
848		DTXSID30895360	C6H3F7O2	OC(=O)C=CC(F)(F)C(F)(F)C(F)(F)F	Reduction and/or hydroxylation with oxidation	Fluorotelomer carboxylic acids and/or perfluorinated carboxylic acids
1567		DTXSID70880215	C6HF11O3	OC(=O)C(F)(OC(F)(F)C(F)(F)C(F)(F)F)C(F)(F)F	Decarboxylation	Polyfluorinated ether without headgroup
1736		DTXSID30382063	C5HF9O4	OC(=O)C(F)(F)OC(F)(F)C(F)(F)OC(F)(F)F	Decarboxylation	Polyfluorinated ether without headgroup
2440	30	DTXSID501026626	C6H6F9NO2S	CCNS(=O)(=O)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)F	Dealkylation and hydrolysis	Perfluorinated sulfonic acids
2749	24	DTXSID20874028	C8H5F11O2	OC(=O)CCC(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)F	Oxidation and hydroxylation	Perfluorinated carboxylic acids
3083	25	DTXSID30891463	C8H2F12O2	OC(=O)C=C(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)F	Reduction and/or hydroxylation with oxidation	Fluorotelomer carboxylic acids and/or perfluorinated carboxylic acids
3348		DTXSID00897154	C11H12F7NO5	CCOC(=O)[C@@@H](CCC(O)=O)NC(=O)C(F)(F)C(F)(F)C(F)(F)C(F)(F)F	Hydrolysis	Perfluorinated carboxylic acids
3809	26	DTXSID001035131	C8HF13O3	OC(=O)C(F)(F)OC(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)F	Decarboxylation	Polyfluorinated ether without headgroup
4361	4	DTXSID6067331	C8H5F13O3S	OS(=O)(=O)CCC(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)F	Desulfonation and oxidation	Fluorotelomer carboxylic acids
4729	29	DTXSID401026647	C8H4F13NO4S	OC(=O)CNS(=O)(=O)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)F	Deacetylation and hydrolysis	Perfluorinated sulfonic acids

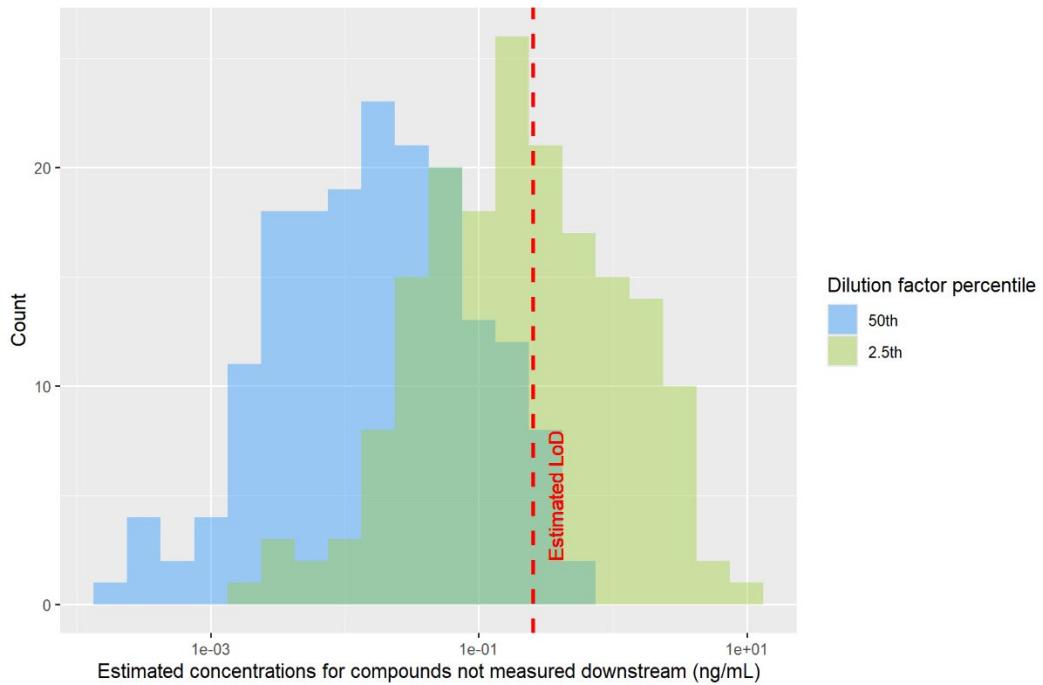

567

568 **Figure S12.** Boxplot of the dilution factors for chemicals measured at each site downstream to
569 Point1-GW. Dilution factors for each site were compared with a Mann-Whitney U test and were
570 found to be comparable ($p = 0.101$).

571
572


573 **Figure S13.** Histogram plot of the distribution of dilution factors for chemicals measured at both
574 Point1-GW and Point1-GW-Downstream1 and Point1-GW-Downstream2. The red vertical line
575 represents the 2.5th percentile of and the black line represents the 50th percentile (median) of the
576 distribution.

577


578

579 **Figure S14.** Histogram plot of the distribution of concentrations estimated in all ground and
580 surface water samples. The black vertical line represents the 5th percentile of the distribution that
581 was used to estimate a limit of detection of 0.003 ng/mL (pre-enrichment).

582

583 **Figure S15.** Histogram of the concentrations estimated for compounds not measured
584 downstream from Point1-GW compared to estimated limit of detection. Two distributions are
585 given, one for a the median (50th percentile) dilution factor in blue and another for the 2.5th
586 dilution factor in green. The estimated limit of detection (0.255 ng/mL for post-enrichment, in-
587 vial) is given as a red vertical line.

588

- 589 **5. References**
- 590 (1) *MPCA brings cutting-edge technology to Minnesota to remove PFAS from water.* Minnesota
591 Pollution Control Agency, 2022. <https://www.pca.state.mn.us/news-and-stories/mpca-brings-cutting-edge-technology-to-minnesota-to-remove-pfas-from-water> (accessed 2024 November
592 20th).
- 593 (2) Sobus, J. R.; Sayre-Smith, N. A.; Chao, A.; Ferland, T. M.; Minucci, J. M.; Carr, E. T.;
594 Brunelle, L. D.; Batt, A. L.; Whitehead, H. D.; Cathey, T.; Boyce, M.; Ulrich, E. M.; McCord, J.
595 P.; Williams, A. J. Automated QA/QC reporting for non-targeted analysis: a demonstration of
596 “INTERPRET NTA” with de facto water reuse data. *Analytical and Bioanalytical Chemistry*.
597 **2025.**
- 598 (3) Pu, S.; Whitehead, H. D.; McCord, J. P.; Dahlmeier, A.; Saravia, S.; Rushing, R.; DeVault,
599 M.; Sobus, J. R. Assessing Sample and Chemical Data Quality for Quantitative Non-Targeted
600 Analysis of Environmental Study Sample. *In preparation.* **2025.**

602