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1. Introduction

Pharmacokinetics(PK) is the branch of pharmacology that deals with the fate and transport of

a drug or other substance within an organism. This branch of pharmacology focuses on what the

body does to a substance in its system. PK accounts for absorption, distribution, metabolism,

and excretion(ADME) of the substance. [3] In this application, we are focused on physiologically

based PK (PBPK) models. A PBPK model might be considered a chemical engineering rep-

resentation of a biological organism. The model parameters are based on anatomy, physiology,

and biochemical properties. A PBPK model is used for various types of extrapolations: between

species, between exposure routes, between exposure scenarios, and within a species. [3]

In this research, we completed extrapolations between routes and species. The routes by which

rats were exposed during toxicological studies were oral doses (occurring as discrete events) and

inhalation exposures (occurring as semi-continuous events). [3] The aim was to find a dosage that

would provide a specific internal dose metric whether the dose was given orally or by inhalation,

occurring discretely or semi-continuously. There was also a PBPK model that extrapolated

data from rats to humans. [3] The distribution of the human PK of the substance was studied

to determine when the majority of the population would experience an adverse effect to the

substance.

The substance that was being studied in this research was Dichloromethane (DCM, methy-

lene chloride). DCM is an industrial solvent that has many uses such as paint stripping and

decaffeinating coffee. [4] DCM has potential for carcinogenic activity when inhaled which can

result in tumors in the lungs and/or liver. [1] Since 1987, the United State Environmental Pro-

tection Agency (USEPA) has recognized the scientific value of using PBPK models to study

carcinogens and have linked variability with overall model uncertainty by use of the Monte

Carlo techniques. [5] The effects of DCM can be observed by exposing rats to DCM through

inhalation then the effects can be extrapolated to humans through the PBPK models. [5]

The aim of this research is to obtain a parametric distribution fit of the empirical distribution

of the interval dose metric in a simulated human population after exposure to DCM. There

are four dose metric that are being analyzed: DM1L, DM2L, DM2LU, AVGCV. Parametric

distribution types will be selected that best fit the empirical distributions. These distribution

fits can be used to evaluate the effects of DCM on human populations.

Model Variables and Internal Dose Metrics
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Model Variables Internal Dose Metrics
AM1L DM1L: Metabolism via MFO pathway in liver per unit of liver volume
AM2L DM2L: Metabolism via GST pathway in liver per unit of liver volume

AM2LU DM2LU: Metabolism via GST pathway in lung per unit of lung volume
AUCV AVGCV: Average venous blood concentration

2. Methods

2.1. Rat Route-to-Route Extrapolation. To start, we conducted a route-to-route extrap-

olation for rats. Oral doses were given in a discrete manner. This discrete case gave rats an

administered dose of DCM at 0800, 1200, and 1600 hours. The dose was 5mg/kg. The first

aim was to find a continuous inhalation concentration that yielded the same internal dose as

the discrete oral dosage. The inhalation concentration was changed manually until we found

an average blood concentration in mg/L that matched both the discrete and continuous cases.

Once this dose metric was obtained the same techniques could be applied to a rat to human

extrapolation.

Figure 1. The routes by which
rats were exposed during toxi-
cological studies were oral doses
(occurring as discrete events).
Notice above the graph is the
value of the dose metric (which
is the dashed line) and it is close
to the value of the other case.

Figure 2. The routes by which
rats were exposed during toxi-
cological studies were inhalation
exposures (occurring as semi-
continuous events). Notice above
the graph is the value of the dose
metric (which is the dashed line)
and it is close to the value of the
other case.

2.2. Distribution of Internal Dose Metrics. In order to model the distribution of internal

dose metrics, we used R studio with the function set.seed(10579) along with a DCM model and

MCSim script provided by the Environmental Protection Agency (EPA) . The parameter values

we used were chosen via David et al. [1] with slight volume modifications from the EPA’s IRIS
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Toxicological Review [2]. It is important to note that the distribution from which the KFC

(First-order metabolic rate constant for GST pathway) value was drawn only takes into account

the +/- genotype for the GST-T1 polymorphism at the moment. We referred to Sweeny et al.

and decided upon the concentrations 50 100 200 for testing our model.

2.2.1. State Variables. We began by setting several state variables that could be manipulated in

various iterations of the R code. The reps parameter value specifies the number of repetitions

or observations that will be run through the model; we set the reps amount to 100, 1000 and

5000. The days and times variables specify the number of days the model runs through and the

time intervals when the output values from the model are collected; we set the days value to 14

and the times variable to collect every hour for all 24 hours in a day. The concentration value is

the initial amount of the substance given to the individual at time 0. This number is changed

during our testing process to 50, 100, or 200 [5]. The set.seed sets the randomization seed so

that randomly generated values are recoverable through different iterations. Finally the metrics

and tests are two lists of the variables used for calculating dose metrics and the names of the

dose metrics that will be calculated. In our case we looked at the following model variables to

calculate their respective internal dose metrics.

2.2.2. Prior to running the Model. We then move into the body of the code where we source

the MCSim script to compile and load the model. Next, we set up the input parameters table

of size according to the value of reps and define each of them as a random number following the

truncated distributions [1] using the EnvStats library in R.

2.2.3. Running the Model. The next part of the code is a for loop which loops according to the

number of reps input; it starts by randomly generating age and then generating a gender, vfm,

and vlm according to the EPA toxicology review [2]. It then assigns values from the randomly

created table to each of the input parameters, while making modifications to fractional body

volumes to ensure that reasonable values are used to describe and individual (i.e. counter exam-

ple). The code then sets our exposure concentration according to the concentration defined in

the state variables. We then move to running the model according to the times, concentration,

and parameters we have defined and set it to a temporary variable. Next, we define the last

week of the model output values, which are the values that we will be analyzing, and create an

array to hold this data. We do this inside of the for loop because the model results are stored

in a data frame with specific variables that we apply to the array we created. Subsequently, we

calculate the dose metrics of interest over the last week using the output parameters of interest

and store it in a data frame. We use the formulas shown below for the calculation of the internal

dose metrics where final values are the last values in the results, LW values are the results at

the beginning of the last week and VL measures the volume of liver tissue. Finally we return to

the top of the for loop and begin the next iteration.
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DM1L =
AM1LFinal −AM1LLW

7 ∗ V L

DM2L =
AM2LFinal −AM2LLW

7 ∗ V L

DM2LU =
AM2LUFinal −AM2LULW

7 ∗ V L

AV GCV =
AUCVFinal −AUCVLW

7

Figure 3. Formulas for Calculating Internal Dose Metrics

2.2.4. Plotting Results. Finally, we create 8 different 4 panel plots, 2 of each of the initial 4

internal dose metrics, using the fitdistrplus library in R, one where a lognormal distribution is

fit and the other where a weibull distribution is fit. Each of these plots gives a historgam with

fitted distribution, a Q-Q plot, a CDF, and a P-P plot. Prior to creating these plots, we use a

standard interquartile range method to exclude outliers by removing any values that exceed 1.5

times the interquartile range. Along with each plot we give the parameter estimates and the

AIC value for comparison of the 2 fits. Once we have the 8 different plots we cycle through the

process again while changing the values for the “reps” and concentration parameters.

3. Results

A total of 72 different 4 panel plots Figures 4-27 represent the results from a 50mg/kg con-

centration of AVGCV,DM1L,DM2L,DM2LU with 6 each dose metric in that order. Figures

28-51 represent the results from a 100mg/kg concentration of AVGCV,DM1L,DM2L,DM2LU

with 6 each dose metric in that order. Figures 52-75 represent the results from a 200mg/kg

concentration of AVGCV,DM1L,DM2L,DM2LU with 6 each dose metric in that order.
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Figure 4. The AVGCV at concentration 50 with sample size of 100 with its
log-normal distribution fit. Along with parameter estimates and AIC value

Figure 5. The AVGCV at concentration 50 with sample size of 100 with its
Weibull distribution fit. Along with parameter estimates and AIC value
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Figure 6. The AVGCV at concentration 50 with sample size of 1000 with its
log-normal distribution fit. Along with parameter estimates and AIC value

Figure 7. The AVGCV at concentration 50 with sample size of 1000 with its
Weibull distribution fit. Along with parameter estimates and AIC value
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Figure 8. The AVGCV at concentration 50 with sample size of 5000 with its
log-normal distribution fit. Along with parameter estimates and AIC value

Figure 9. The AVGCV at concentration 50 with sample size of 5000 with its
Weibull distribution fit. Along with parameter estimates and AIC value
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Figure 10. The DM1L at concentration 50 with sample size of 100 with its
log-normal distribution fit. Along with parameter estimates and AIC value

Figure 11. The DM1L at concentration 50 with sample size of 100 with its
Weibull distribution fit. Along with parameter estimates and AIC value
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Figure 12. The DM1L at concentration 50 with sample size of 1000 with its
log-normal distribution fit. Along with parameter estimates and AIC value

Figure 13. The DM1L at concentration 50 with sample size of 1000 with its
Weibull distribution fit. Along with parameter estimates and AIC value
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Figure 14. The DM1L at concentration 50 with sample size of 5000 with its
log-normal distribution fit. Along with parameter estimates and AIC value

Figure 15. The DM1L at concentration 50 with sample size of 5000 with its
Weibull distribution fit. Along with parameter estimates and AIC value



DISTRIBUTION OF SEVERAL INTERNAL DOSE METRICS AT VARYING LEVELS OF DCM 11

Figure 16. The DM2L at concentration 50 with sample size of 100 with its
log-normal distribution fit. Along with parameter estimates and AIC value

Figure 17. The DM2L at concentration 50 with sample size of 100 with its
Weibull distribution fit. Along with parameter estimates and AIC value
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Figure 18. The DM2L at concentration 50 with sample size of 1000 with its
log-normal distribution fit. Along with parameter estimates and AIC value

Figure 19. The DM2L at concentration 50 with sample size of 1000 with its
Weibull distribution fit. Along with parameter estimates and AIC value
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Figure 20. The DM2L at concentration 50 with sample size of 5000 with its
log-normal distribution fit. Along with parameter estimates and AIC value

Figure 21. The DM2L at concentration 50 with sample size of 5000 with its
Weibull distribution fit. Along with parameter estimates and AIC value
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Figure 22. The DM2LU at concentration 50 with sample size of 100 with its
log-normal distribution fit. Along with parameter estimates and AIC value

Figure 23. The DM2LU at concentration 50 with sample size of 100 with its
Weibull distribution fit. Along with parameter estimates and AIC value
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Figure 24. The DM2LU at concentration 50 with sample size of 1000 with its
log-normal distribution fit. Along with parameter estimates and AIC value

Figure 25. The DM2LU at concentration 50 with sample size of 1000 with its
Weibull distribution fit. Along with parameter estimates and AIC value
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Figure 26. The DM2LU at concentration 50 with sample size of 5000 with its
log-normal distribution fit. Along with parameter estimates and AIC value

Figure 27. The DM2LU at concentration 50 with sample size of 5000 with its
Weibull distribution fit. Along with parameter estimates and AIC value
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Figure 28. The AVGCV at concentration 100 with sample size of 100 with its
log-normal distribution fit. Along with parameter estimates and AIC value

Figure 29. The AVGCV at concentration 100 with sample size of 100 with its
Weibull distribution fit. Along with parameter estimates and AIC value
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Figure 30. The AVGCV at concentration 100 with sample size of 1000 with its
log-normal distribution fit. Along with parameter estimates and AIC value

Figure 31. The AVGCV at concentration 100 with sample size of 1000 with its
Weibull distribution fit. Along with parameter estimates and AIC value
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Figure 32. The AVGCV at concentration 100 with sample size of 5000 with its
log-normal distribution fit. Along with parameter estimates and AIC value

Figure 33. The AVGCV at concentration 100 with sample size of 5000 with its
Weibull distribution fit. Along with parameter estimates and AIC value
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Figure 34. The DM1L at concentration 100 with sample size of 100 with its
log-normal distribution fit. Along with parameter estimates and AIC value

Figure 35. The DM1L at concentration 100 with sample size of 100 with its
Weibull distribution fit. Along with parameter estimates and AIC value
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Figure 36. The DM1L at concentration 100 with sample size of 1000 with its
log-normal distribution fit. Along with parameter estimates and AIC value

Figure 37. The DM1L at concentration 100 with sample size of 1000 with its
Weibull distribution fit. Along with parameter estimates and AIC value
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Figure 38. The DM1L at concentration 100 with sample size of 5000 with its
log-normal distribution fit. Along with parameter estimates and AIC value

Figure 39. The DM1L at concentration 100 with sample size of 5000 with its
Weibull distribution fit. Along with parameter estimates and AIC value
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Figure 40. The DM2L at concentration 100 with sample size of 100 with its
log-normal distribution fit. Along with parameter estimates and AIC value

Figure 41. The DM2L at concentration 100 with sample size of 100 with its
Weibull distribution fit. Along with parameter estimates and AIC value
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Figure 42. The DM2L at concentration 100 with sample size of 1000 with its
log-normal distribution fit. Along with parameter estimates and AIC value

Figure 43. The DM2L at concentration 100 with sample size of 1000 with its
Weibull distribution fit. Along with parameter estimates and AIC value
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Figure 44. The DM2L at concentration 100 with sample size of 5000 with its
log-normal distribution fit. Along with parameter estimates and AIC value

Figure 45. The DM2L at concentration 100 with sample size of 5000 with its
Weibull distribution fit. Along with parameter estimates and AIC value
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Figure 46. The DM2LU at concentration 100 with sample size of 100 with its
log-normal distribution fit. Along with parameter estimates and AIC value

Figure 47. The DM2LU at concentration 100 with sample size of 100 with its
Weibull distribution fit. Along with parameter estimates and AIC value
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Figure 48. The DM2LU at concentration 100 with sample size of 1000 with its
log-normal distribution fit. Along with parameter estimates and AIC value

Figure 49. The DM2LU at concentration 100 with sample size of 1000 with its
Weibull distribution fit. Along with parameter estimates and AIC value
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Figure 50. The DM2LU at concentration 100 with sample size of 5000 with its
log-normal distribution fit. Along with parameter estimates and AIC value

Figure 51. The DM2LU at concentration 100 with sample size of 5000 with its
Weibull distribution fit. Along with parameter estimates and AIC value
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Figure 52. The AVGCV at concentration 200 with sample size of 100 with its
log-normal distribution fit. Along with parameter estimates and AIC value

Figure 53. The AVGCV at concentration 200 with sample size of 100 with its
Weibull distribution fit. Along with parameter estimates and AIC value



30 RYAN BUNN MACIE KING CHANDRA MANIVANNAN

Figure 54. The AVGCV at concentration 200 with sample size of 1000 with its
log-normal distribution fit. Along with parameter estimates and AIC value

Figure 55. The AVGCV at concentration 200 with sample size of 1000 with its
Weibull distribution fit. Along with parameter estimates and AIC value
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Figure 56. The AVGCV at concentration 200 with sample size of 5000 with its
log-normal distribution fit. Along with parameter estimates and AIC value

Figure 57. The AVGCV at concentration 200 with sample size of 5000 with its
Weibull distribution fit. Along with parameter estimates and AIC value
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Figure 58. The DM1L at concentration 200 with sample size of 100 with its
log-normal distribution fit. Along with parameter estimates and AIC value

Figure 59. The DM1L at concentration 200 with sample size of 100 with its
Weibull distribution fit. Along with parameter estimates and AIC value
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Figure 60. The DM1L at concentration 200 with sample size of 1000 with its
log-normal distribution fit. Along with parameter estimates and AIC value

Figure 61. The DM1L at concentration 200 with sample size of 1000 with its
Weibull distribution fit. Along with parameter estimates and AIC value
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Figure 62. The DM1L at concentration 200 with sample size of 5000 with its
log-normal distribution fit. Along with parameter estimates and AIC value

Figure 63. The DM1L at concentration 200 with sample size of 5000 with its
Weibull distribution fit. Along with parameter estimates and AIC value
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Figure 64. The DM2L at concentration 200 with sample size of 100 with its
log-normal distribution fit. Along with parameter estimates and AIC value

Figure 65. The DM2L at concentration 200 with sample size of 100 with its
Weibull distribution fit. Along with parameter estimates and AIC value
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Figure 66. The DM2L at concentration 200 with sample size of 1000 with its
log-normal distribution fit. Along with parameter estimates and AIC value

Figure 67. The DM2L at concentration 200 with sample size of 1000 with its
Weibull distribution fit. Along with parameter estimates and AIC value
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Figure 68. The DM2L at concentration 200 with sample size of 5000 with its
log-normal distribution fit. Along with parameter estimates and AIC value

Figure 69. The DM2L at concentration 200 with sample size of 5000 with its
Weibull distribution fit. Along with parameter estimates and AIC value
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Figure 70. The DM2LU at concentration 200 with sample size of 100 with its
log-normal distribution fit. Along with parameter estimates and AIC value

Figure 71. The DM2LU at concentration 200 with sample size of 100 with its
Weibull distribution fit. Along with parameter estimates and AIC value
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Figure 72. The DM2LU at concentration 200 with sample size of 1000 with its
log-normal distribution fit. Along with parameter estimates and AIC value

Figure 73. The DM2LU at concentration 200 with sample size of 1000 with its
Weibull distribution fit. Along with parameter estimates and AIC value



40 RYAN BUNN MACIE KING CHANDRA MANIVANNAN

Figure 74. The DM2LU at concentration 200 with sample size of 5000 with its
log-normal distribution fit. Along with parameter estimates and AIC value

Figure 75. The DM2LU at concentration 200 with sample size of 5000 with its
Weibull distribution fit. Along with parameter estimates and AIC value
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4. Conclusion

Based on our analysis of the internal dose metric distributions as depicted above, we have

come to the conclusion no one distribution ideally fits all dose metrics uniformly. Rather, specific

distributions are better fits for certain dose metrics.

For the dose metrics DM1L, DM2L, and DM2LU, the Weibull distribution offers the best (as

in, most uniform) fit for the dose metric data. Even with a sample size as small as 100 for the

respective dose metrics, we achieve a reasonable distribution fit for the data with the Weibull

distribution.

For the dose metric AVGCV, the log-normal offers the “best” (as in, the most uniform fit for

the dose metric data). In contrast to the previously mentioned dose metrics, small sample sizes

of the dose metric AVGCV do not produce a reasonable distribution fit of the data.

Our findings from this study will help us achieve our original goal of modeling dose suscepti-

bility in sensitive human subpopulations. We discuss this further shortly.

5. Discussion

Q-Q plots should ideally follow the line on the graph, that is there should be a one to one

correspondence with the theoretical quantiles, where the data exists on a log-normal with pa-

rameters produced, and the empirical quantiles, where the data actually exists. This would

mean that the data closely follows the given distribution. In cases where the empirical quantiles

plot deviates greatly from the given line we say that the fitted distribution is not a ”good-fit”

to the data.

Based upon the results the Weibull works best for the DM1L DM2L and DM2LU dose metrics

and lognormal fits slightly better for the AVGCV dose metric. The parameter estimates for each

of the fits varies slightly across the different sample sizes, but tends to remain within a reasonable

range. More testing would be necessary to determine precise parameter estimates. The sample

sizes of 100 are getting results that, depending on the context of a problem, could be substantially

close enough to use instead of 5000 samples.

There are many opportunities for future work based off of this research. The distribution fits

found for DCM in human interval doses can be replicated with other substances. The ability to

analyze other substance’s distributions would allow other toxic materials to be monitored and

exposure to humans could be limited.

The human population has subpopulations that are more sensitive to substances that can

be toxic. Examples of these sensitive subpopulations are children, elderly people, and preg-

nant women. These sensitive subpopulations can have different, more sensitive tolerances to

substances that can be toxic like DCM. The distributions found for normal human populations

can be analyzed to look for sensitive subpopulation characteristics in the distributions. Further

research in this area would protect these sensitive subpopulations from over exposure of toxic

substances.
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