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frequency in the dataset. 
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Performance Analyses on Individual Datasets 

Literature Dataset Performance 

A summary of the performance metrics calculated from the predictions from each MetSim tool on 

the Literature Dataset of 59 drug and NSAID parent chemicals and their 179 reported phase I 

metabolites, is given in Table S4.  

BioTransformer predictions on the Literature Dataset using b.ec.1.cyp450.2.phase2.1 generated a 

total of 11202 metabolite predictions. Of those predictions, 111 TP predictions of the 179 total 

reported metabolites were correctly identified. Conversely, there were 68 FN predictions of the 

179 reported metabolites, yielding a recall of 0.62. There were a total of 11091 FP predictions, 

yielding a precision of 0.010.  

TIMES predictions on Drug Dataset were generated via the tm.vitro_rat.6 and tm.vivo_rat.6 

models, where tm.vitro_rat.6 generated a total of 662 metabolite predictions. Of those predictions, 

83 TP predictions of the 179 total reported metabolites were correctly identified. Conversely, there 

were 96 FN predictions of the 179 reported metabolites, yielding a recall of 0.46. There were a 

total of 579 FP predictions, yielding a precision of 0.125. The tm.vivo_rat.6 model generated a 

total of 625 metabolite predictions. Of those predictions, 75 TP predictions of the 179 total reported 

metabolites were correctly identified. Conversely, there were 104 FN predictions of the 179 

reported metabolites, yielding a recall of 0.42, which was the lowest individual recall rate across 

all four tools. There were a total of 550 FP predictions, yielding a precision of 0.120. 

Toolbox API predictions on the Drug Dataset were generated from the tb.vitro_rat.3 and 

tb.vivo_rat.6 models, where the tb.vitro_rat.3 model generated a total of 539 metabolite 

predictions. Of those predictions, 93 TP predictions of the 179 total reported metabolites were 

correctly identified. Conversely, there were 86 FN predictions of the 179 reported metabolites, 

yielding a recall of 0.52. There were a total of 446 FP predictions, yielding a precision of 0.173. 

The tb.vivo_rat.6 model generated a total of 623 metabolite predictions. Of those predictions, 86 

TP predictions of the 179 total reported metabolites were correctly identified. Conversely, there 

were 93 FN predictions of the 179 reported metabolites, yielding a recall of 0.48. There were a 

total of 537 FP predictions, yielding a precision of 0.138. 
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CTS predictions on the Drug Dataset using cts.chemaxon.3 generated a total of 5713 metabolite 

predictions. Of those predictions, 131 TP predictions of the 179 total reported metabolites were 

correctly identified. Conversely, there were 48 FN predictions of the 179 reported metabolites, 

yielding a recall of 0.73, which was the highest individual recall rate across all four tools. There 

were a total of 5582 FP predictions, yielding a precision of 0.023.  

When the predictions from all four of the tools are aggregated together, a total of 15497 unique 

metabolite predictions are generated. Of those predictions, 154 TP predictions of the 179 total 

reported metabolites were correctly identified. Conversely, there were 25 FN predictions of the 

179 reported metabolites, yielding a recall of 0.86, which yields a 13% increase in recall rate 

compared to CTS, the highest performing individual tool. There were a total of 15343 FP 

predictions, yielding a precision of 0.010. 

Literature Dataset Clustering Analysis 

Hierarchical clustering analysis of recall against the chemical classes within both datasets was 

performed and compared across all tools. The result of this analysis for the Literature Dataset is 

shown in Figure S4. The highest recall rates across all tools were observed for phenanthrenes, 

diazines, phenylpropanoic acids, azoles, lactams, benzothiazenes, steroids, and piperadines, 

comprising ~17% of the dataset (10 compounds), where most tools yield high recall rates. 

Conversely, most tools performed poorly on nucleoside and nucleotide analogues, carboxylic 

acids, pyrrolines, and organonitrogen compounds, comprising ~12% of the dataset (7 compounds). 

The remaining ~71% of the dataset (42 compounds) varied greatly in their recall rates, depending 

on the choice of tool and model. However, in all cases, the aggregated recall rate over all models 

yielded either matches the highest recall rate among available tools, or improved recall compared 

across all tools. It is additionally worth noting that, of the 17/28 ClassyFire assigned chemical 

classes where a mean recall rate of one was achieved for that chemical class, all but one case are 

classes that account for a single parent chemical in the dataset of 59. The singular case is indoles, 

which account for 2/59 of the parent chemicals. Thus, recall rates equal to one were attained for 

~31% of the dataset, whether by individual models, or the aggregation of all model predictions. 

Examples of consensus recall rate improvement compared to the highest individual model recall 

rate for specific chemical class groupings include pyrroles (+20% recall), pyrrolines (+20% recall), 
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benzodiazepines (+17% recall),  benzene and substituted derivatives (+6% recall), organooxygen 

compounds (+7% recall), and naphthalenes (+5% recall). 

SMPDB Dataset 

A summary of the performance metrics calculated from the predictions from each MetSim tool on 

the SMPDB Dataset of 59 Drug parent chemicals and their 259 reported phase I and phase II 

metabolites, is given in Table S5.  

BioTransformer predictions on the Literature Dataset using bt.ec.1.cyp450.2.phase2.1 generated a 

total of 16534 metabolite predictions. Of those predictions, 110 TP predictions of the 259 total 

reported metabolites were correctly identified. Conversely, there were 149 FN predictions of the 

259 reported metabolites, yielding a recall of 0.42. There were a total of 16424 FP predictions, 

yielding a precision of 0.007.  

TIMES predictions on Drug Dataset were generated via the tm.vitro_rat.6 and tm.vivo_rat.6 

models, where tm.vitro_rat.6 generated a total of 734 metabolite predictions. Of those predictions, 

93 TP predictions of the 259 total reported metabolites were correctly identified. Conversely, there 

were 166 FN predictions of the 259 reported metabolites, yielding a recall of 0.36. There were a 

total of 641 FP predictions, yielding a precision of 0.127. The tm.vivo_rat.6 model generated a 

total of 721 metabolite predictions. Of those predictions, 103 TP predictions of the 259 total 

reported metabolites were correctly identified. Conversely, there were 156 FN predictions of the 

259 reported metabolites, yielding a recall of 0.40. There were a total of 618 FP predictions, 

yielding a precision of 0.143. 

Toolbox API predictions on the Drug Dataset were generated from the tb.vitro_rat.3 and 

tb.vivo_rat.6 models, where the tb.vitro_rat.3 model generated a total of 712 metabolite 

predictions. Of those predictions, 86 TP predictions of the 259 total reported metabolites were 

correctly identified. Conversely, there were 173 FN predictions of the 259 reported metabolites, 

yielding a recall of 0.33, which was the lowest individual recall rate across all four tools. There 

were a total of 626 FP predictions, yielding a precision of 0.121. The tb.vivo_rat.6 model generated 

a total of 916 metabolite predictions. Of those predictions, 95 TP predictions of the 259 total 

reported metabolites were correctly identified. Conversely, there were 164 FN predictions of the 
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259 reported metabolites, yielding a recall of 0.37. There were a total of 821 FP predictions, 

yielding a precision of 0.104. 

CTS predictions on the Drug Dataset using cts.chemaxon.3 generated a total of 8248 metabolite 

predictions. Of those predictions, 111 TP predictions of the 259 total reported metabolites were 

correctly identified. Conversely, there were 148 FN predictions of the 259 reported metabolites, 

yielding a recall of 0.43, which was the highest individual recall rate across all four tools. There 

were a total of 8137 FP predictions, yielding a precision of 0.013.  

When the predictions from all four of the tools are aggregated together, a total of 23821 unique 

metabolite predictions are generated. Of those predictions, 166 TP predictions of the 259 total 

reported metabolites were correctly identified. Conversely, there were 93 FN predictions of the 

259 reported metabolites, yielding a recall of 0.64, which yields a 21% increase in recall rate 

compared to CTS, the highest performing individual tool. There were a total of 23655 FP 

predictions, yielding a precision of 0.007. 

SMPDB Dataset Clustering Analysis 

Hierarchical clustering analysis of recall against the chemical classes within both datasets was 

performed and compared across all tools. The result of this analysis for the SMPDB Dataset is 

shown in Figure S5. The highest recall rates across most tools were observed for carboxylic acids, 

phenylpropanoic acids, and morphinans, comprising ~26% of the dataset (15 compounds). 

Conversely, most tools performed poorly on nucleoside and nucleotide analogues, fatty acyls, 

benzimidazoles, 5’-deoxyribonucleosides, imidazopyramidines, and diazines, comprising ~20% 

of the dataset (12 compounds). The remaining ~54% of the dataset (32 compounds) varied greatly 

in their recall rates, depending on the choice of tool and model. However, in all cases, the 

aggregated recall rate over all models yielded either matches the highest recall rate among 

available tools, or improved recall compared across all tools. It is additionally worth noting that, 

of the 8/27 ClassyFire assigned chemical classes where a mean recall rate of one was achieved for 

that chemical class, all but one case are classes that account for a single parent chemical in the 

dataset of 59. The singular case is morphinans, which account for 3/59 of the parent chemicals. 

Thus, recall rates equal to one were attained for ~17% of the dataset, whether by individual models, 

or the aggregation of all model predictions. Examples of consensus recall rate improvement 
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compared to the highest individual model recall rate for specific chemical class groupings include 

pyridines (+36% recall), anthracyclines (+33% recall), phenol ethers (+16% recall), fatty acyls 

(+13% recall), benzazepines (+11% recall), stilbenes (+6% recall), organonitrogen compounds 

(+5% recall), and carboxylic acids (+4% recall). 
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Figure S1. Truncated YAML hierarchically structured output for Aripiprazole using results from 

TIMES In Vivo Rat Simulator model. 
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Figure S2. Default TIMES model parameters for the In Vitro Rat Liver S9 model. 
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Figure S3. Default TIMES model parameters for In Vivo Rat Simulator model. 

 

Parameter adjustments in TIMES take place after loading the desired metabolism simulator (either 

In Vivo Rat Simulator or In Vitro Rat Liver S9). Within the tab corresponding to the simulator, 

input parameters are accessed via the “Metabolization” button within the Model Options toolbar. 

In this study, both metabolism simulators are set to the same Max Level of 6, with the probability 

of obtaining a metabolite (P. Obtain) thresholded at 0.1. For both simulators, the “Max count” 

parameter that thresholds the maximum number of metabolites per cycle was increased to 10 per 

cycle. All other parameters were left at their default settings. It is worth noting as well that 

increasing the “Rival Pathways” parameter to greater than one will typically increase the breadth 

of a transformation tree out to the selected transformation depth, and that often, transformation 
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depth is maximized at 5 to 6 cycles at most, given phase II elimination rules that terminate 

transformation pathways within TIMES. 
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Fig. S4 Hierarchically clustered heatmap of Recall Rate clustered on chemical class as designated 

by ClassyFire for each choice of metabolism simulator and model applied to the Literature Dataset 

containing 59 parent chemicals. Model selections are indicated at the bottom of each column of 

the clustered heatmap as one cycle of the “ecbased”, two cycles of “Cyp450”, and one cycle of 

“phaseII” metabolism in BioTransformer (BioTransformer), Three cycles of ChemAxon Human 

Phase I within CTS (CTS), Toolbox In Vitro Rat Liver S9 (Toolbox Vitro) or In Vivo Rat 

Simulator (Toolbox Vivo), and TIMES In Vitro Rat Liver S9 (TIMES Vitro) or In Vivo Rat 

Simulator (TIMES Vivo). Average recall rate for a given chemical class is illustrated by an 

increasingly dark gradient from zero (white) to unity (dark red) with the actual mean recall rate 

given in each heatmap cell. (Right) Bar chart of chemical class versus log2 scaled occurrence 

frequency in the dataset. 
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Fig. S5 Hierarchically clustered heatmap of Recall Rate clustered on chemical class as designated 

by ClassyFire for each choice of metabolism simulator and model applied to the SMPDB Dataset 

containing 59 parent chemicals. Model selections are indicated at the bottom of each column of 

the clustered heatmap as one cycle of the “ecbased”, two cycles of “Cyp450”, and one cycle of 

“phaseII” metabolism in BioTransformer (BioTransformer), Three cycles of ChemAxon Human 

Phase I within CTS (CTS), Toolbox In Vitro Rat Liver S9 (Toolbox Vitro) or In Vivo Rat 

Simulator (Toolbox Vivo), and TIMES In Vitro Rat Liver S9 (TIMES Vitro) or In Vivo Rat 

Simulator (TIMES Vivo). Average recall rate for a given chemical class is illustrated by an 

increasingly dark gradient from zero (white) to unity (dark red) with the actual mean recall rate 

given in each heatmap cell. (Right) Bar chart of chemical class versus log2 scaled occurrence 

frequency in the dataset. 



S16 

 

 

  



S17 

Figure S6: Average log(Kow) values queried from the from the Toolbox API (right, negative values 

in blue shades, positive values in red shades, zero is white, empty cells returned no log(Kow) data) 

sorted with the chemical class and recall rate hierarchical clustering analysis results from the Drug 

Dataset (left). 
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Table S1. Comparison of performance metrics for BioTransformer 2019 validation dataset to 

current BioTransformer predictions for human tissue metabolism in absence of gut microbiome 

predictions. 

* Metabolites for the literature SDF were counted manually before automated processing in 

Python, and after processing in Python. Counted 213 metabolites instead of 224. 

 

 

 

 

BioTransformer 

Single-Step Human 

Metabolism 

No Gut (hgut) 

Literatu

re 

Values 

Combined Individual 

Runs 

1x cyp450 

(CypReact) 

1x EC-based 

1x Phase II 

Sequential Runs 

1x Cyp450 

(CypReact) 

1x EC-Based 

1x Phase II 

Sequential Runs 

1x EC-Based 

1x Cyp450 

(CypReact) 

1x Phase II 

True Positives 188 150 151 158 

False Positives 198 184 1765 1271 

False Negatives 26 63 62 55 

Total No. of 

Predictions 

386 334 1916 1429 

Total Precision 0.49 0.45 0.08 0.11 

Total Recall 0.88 0.70 0.71 0.74 

Total No. of 

Reported 

Metabolites 

224 213*  213* 213*  
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Table S2. Comparison of performance metrics for BioTransformer validation dataset to current 

BioTransformer predictions for single-step phase I metabolism predictions. 

BioTransformer 

Single-Step 

Cyp450 

(CypReact) 

Literat

ure 

Values 

1x 

Cyp450 

(CypRe

act) 

True Positives 162 141 

False Positives 188 186 

False Negatives 18 45 

Total No. of 

Predictions 

350 327 

Total Precision 0.46 0.43 

Total Recall 0.90 0.76 

Total No. of 

Reported 

Metabolites 

180 186*  

* Metabolites for the literature SDF were counted manually before automated processing in 

Python, and after processing in Python. Counted 186 metabolites instead of 180. 
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Table S3. Comparison of TIMES performance metrics against training set observed maps with 

parameters set to match current prediction parameters. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TIMES 

Version 2.31.2.82 

In Vitro Rat Liver S9 

Version 12.18 

438 Parents in 

Training Set 

112 Out of Domain 

Documented Recall 

0.81 

In Vivo Rat Simulator  

Version 08.14 

701 Parents In 

Training Set 

204 Out of Domain 

Documented Recall 

0.77 

True Positives 682 1409 

False Positives 623 1253 

False Negatives 89 640 

Total No. of Predictions 1305 2662 

Total Precision 0.52 0.77 

Total Recall 0.88 0.69 

Total No. of Reported 

Metabolites 

771 2049 
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Table S4. Predictive performance characteristics for the Phase I metabolite relationships in the 

Literature Dataset. 

JCIM  

59 Drugs 

& 

NSAIDs 

CTS 

ChemAx

on 

Phase I  

3 cycles 

BioTransfor

mer 

1x EC-

Based,  

2x Cyp450,  

1x Phase II 

4 cycles 

Toolbo

x API 

In Vivo 

Rat 

Simulat

or 

Phase I 

Toolbo

x API 

In 

Vitro 

Rat 

Liver 

S9 

Phase 

I 

TIMES  

In Vivo 

Rat 

Simulat

or 

6 cycles 

TIME

S  

In 

Vitro 

Rat 

Liver 

S9 

6 

cycles 

Aggreg

ate of 

All 

Models 

True 

Positives 

131 111 86 93 75 83 154 

False 

Positives 

5582 11091 537 446 550 579 15343 

False 

Negatives 

48 68 93 86 104 96 25 

Total No. 

of 

Predictio

ns 

5713 11202 623 539 625 662 15497 

Total 

Precision 

0.023 0.010 0.138 0.173 0.120 0.125 0.010 

Total 

Recall 

0.73 0.62 0.48 0.52 0.42 0.46 0.86 
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Total No. 

of 

Reported 

Metabolit

es 

179 179 179 179 179 179 179 
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Table S5. Predictive performance characteristics for the Phase I and Phase II metabolite 

relationships in the SMPDB Dataset. 

SMPDB  

59 Drugs 

CTS 

ChemAx

on 

Phase I  

3 cycles 

BioTransfor

mer 

1x EC-

Based,  

2x Cyp450,  

1x Phase II 

4 cycles 

Toolbo

x API 

In Vivo 

Rat 

Simulat

or 

Phase I 

Toolbo

x API 

In 

Vitro 

Rat 

Liver 

S9 

Phase 

I 

TIMES  

In Vivo 

Rat 

Simulat

or 

6 cycles 

TIME

S  

In 

Vitro 

Rat 

Liver 

S9 

6 

cycles 

Aggreg

ate of 

All 

Models 

 

 

 

 

True 

Positives 

111 110 95 86 103 93 166 

False 

Positives 

8137 16424 821 821 618 641 23655 

False 

Negatives 

148 149 164 173 156 166 93 

Total No. 

of 

Predictio

ns 

8248 16534 916 712 721 734 23821 

Total 

Precision 

0.013 0.007 0.104 0.121 0.143 0.127 0.007 

Total 

Recall 

0.43 0.42 0.37 0.33 0.40 0.36 0.64 
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Total No. 

of 

Reported 

Metabolit

es 

259 259 259 259 259 259 259 
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Table S6. Spearman Correlation analysis of log(Kow) on Recall Rate with P-values. 

Tool Spearman Coefficient 

(LogKow & Recall 

Rate) 

P-Value 

BioTransformer 0.26 0.009 

Toolbox In Vitro Rat Liver 

S9 

0.19 0.004 

Toolbox In Vivo Rat 

Simulator 

0.20 0.044 

TIMES In Vitro Rat Liver S9 0.19 0.059 

TIMES In Vivo Rat 

Simulator 

0.15 0.144 

CTS 0.31 0.002 

Ensemble 0.27 0.006 
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