Supplemental Information for

MetSim: Integrated Programmatic Access and Pathway Management for Xenobiotic Metabolism Simulators

Louis Groff[†], Antony Williams[†], Imran Shah[†], Grace Patlewicz^{†*}

[†]Center for Computational Toxicology and Exposure (CCTE), Office of Research and

Development, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA

ORCiDs:

LG: https://orcid.org/0000-0002-6357-0508 AW: https://orcid.org/0000-0002-2668-4821 IS: https://orcid.org/0000-0003-0808-0140 GP: https://orcid.org/0000-0003-3863-9689

*Correspondence to be addressed to:

Grace Patlewicz Center for Computational Toxicology and Exposure (CCTE) Office of Research and Development U.S. Environmental Protection Agency 109 TW Alexander Drive Research Triangle Park, NC 27711 Telephone: (919) 541-1540 <u>E-mail: patlewicz.grace@epa.gov.</u>

List of Supplemental Material

Figure S1. Truncated YAML hierarchically structured output for Aripiprazole using results from TIMES In Vivo Rat Simulator model.

Figure S2. Default TIMES inputs for In Vitro Rat Liver S9 metabolism simulator.

Figure S3. Default TIMES model parameters for In Vivo Rat Simulator model.

Figure S4. Hierarchically clustered heatmap of Recall Rate clustered on chemical class as designated by ClassyFire for each choice of metabolism simulator and model applied to the Literature Dataset containing 59 parent chemicals. Model selections are indicated at the bottom of each column of the clustered heatmap as one cycle of the "ecbased", two cycles of "Cyp450", and one cycle of "phaseII" metabolism in BioTransformer (BioTransformer), Three cycles of ChemAxon Human Phase I within CTS (CTS), Toolbox In Vitro Rat Liver S9 (Toolbox Vitro) or In Vivo Rat Simulator (Toolbox Vivo), and TIMES In Vitro Rat Liver S9 (TIMES Vitro) or In Vivo Rat Simulator (TIMES Vivo). Average recall rate for a given chemical class is illustrated by an increasingly dark gradient from zero (white) to unity (dark red) with the actual mean recall rate given in each heatmap cell. (Right) Bar chart of chemical class versus log2 scaled occurrence frequency in the dataset.

Figure S5. Hierarchically clustered heatmap of Recall Rate clustered on chemical class as designated by ClassyFire for each choice of metabolism simulator and model applied to the SMPDB Dataset containing 59 parent chemicals. Model selections are indicated at the bottom of each column of the clustered heatmap as one cycle of the "ecbased", two cycles of "Cyp450", and one cycle of "phaseII" metabolism in BioTransformer (BioTransformer), Three cycles of ChemAxon Human Phase I within CTS (CTS), Toolbox In Vitro Rat Liver S9 (Toolbox Vitro) or In Vivo Rat Simulator (Toolbox Vivo), and TIMES In Vitro Rat Liver S9 (TIMES Vitro) or In Vivo Rat Simulator (TIMES Vivo). Average recall rate for a given chemical class is illustrated by an increasingly dark gradient from zero (white) to unity (dark red) with the actual mean recall rate given in each heatmap cell. (Right) Bar chart of chemical class versus log2 scaled occurrence frequency in the dataset.

Figure S6: Average $log(K_{ow})$ values queried from the from the Toolbox API (right, negative values in blue shades, positive values in red shades, zero is white, empty cells returned no $log(K_{ow})$ data) sorted with the chemical class and recall rate hierarchical clustering analysis results from the Drug Dataset (left).

Table S1. Comparison of performance metrics for BioTransformer 2019 validation dataset to current BioTransformer predictions for human tissue metabolism in absence of gut microbiome predictions.

Table S2. Comparison of performance metrics for BioTransformer validation dataset to current BioTransformer predictions for single-step Phase I metabolism predictions.

Table S3. Comparison of TIMES performance metrics against training set observed maps with parameters set to match current prediction parameters.

Table S4. Predictive performance characteristics for the Phase I metabolite relationships in the Literature Dataset.

Table S5. Predictive performance characteristics for the Phase I and Phase II metabolite relationships in the SMPDB Dataset.

Table S6. Spearman Correlation analysis of log(K_{ow}) on Recall Rate with P-values.

Supplementary File 1. MetSim_Tool_Details.xlsx. Data table of the metabolism simulators considered, their availability, implementation language, operating system, chemical input format, metabolite outputs, model parameter details and options, batch execution options, and tool execution times per chemical.

Supplementary File 2. MetSim_Performance_Tables.xlsx Input data for parent chemicals (Chemical name, QSAR-Ready SMILES, InChIKey, CASRN), ClassyFire chemical class assignment, Log Kow values, Performance metrics for each tool (True positives, false negatives, false positives, recall).

Supplementary File 3. JSON file of observed metabolism pathways for the 112 parent chemicals in the Drug Dataset, in MetSim format.

Supplementary File 4. JSON file of BioTransformer predicted metabolism pathways for the 112 parent chemicals in the Drug Dataset, in MetSim format.

Supplementary File 5. JSON file of CTS predicted metabolism pathways for the 112 parent chemicals in the Drug Dataset, in MetSim format.

Supplementary File 6. JSON file of TIMES In Vitro Rat Liver S9 predicted metabolism pathways for the 112 parent chemicals in the Drug Dataset, in MetSim format.

Supplementary File 7. JSON file of TIMES In Vivo Rat Simulator predicted metabolism pathways for the 112 parent chemicals in the Drug Dataset, in MetSim format.

Supplementary File 8. JSON file of Toolbox API In Vitro Rat Liver S9 predicted metabolism pathways for the 112 parent chemicals in the Drug Dataset, in MetSim format.

Supplementary File 9. JSON file of Toolbox API In Vivo Rat Simulator predicted metabolism pathways for the 112 parent chemicals in the Drug Dataset, in MetSim format.

Supplementary File 10. JSON file of aggregate model predicted metabolism pathways for the 112 parent chemicals in the Drug Dataset, in MetSim format.

Performance Analyses on Individual Datasets

Literature Dataset Performance

A summary of the performance metrics calculated from the predictions from each MetSim tool on the Literature Dataset of 59 drug and NSAID parent chemicals and their 179 reported phase I metabolites, is given in Table S4.

BioTransformer predictions on the Literature Dataset using b.ec.1.cyp450.2.phase2.1 generated a total of 11202 metabolite predictions. Of those predictions, 111 TP predictions of the 179 total reported metabolites were correctly identified. Conversely, there were 68 FN predictions of the 179 reported metabolites, yielding a recall of 0.62. There were a total of 11091 FP predictions, yielding a precision of 0.010.

TIMES predictions on Drug Dataset were generated via the tm.vitro_rat.6 and tm.vivo_rat.6 models, where tm.vitro_rat.6 generated a total of 662 metabolite predictions. Of those predictions, 83 TP predictions of the 179 total reported metabolites were correctly identified. Conversely, there were 96 FN predictions of the 179 reported metabolites, yielding a recall of 0.46. There were a total of 579 FP predictions, yielding a precision of 0.125. The tm.vivo_rat.6 model generated a total of 625 metabolite predictions. Of those predictions, 75 TP predictions of the 179 total reported metabolites were 104 FN predictions of the 179 reported metabolites, where use 104 FN predictions of the 179 reported metabolites, yielding a recall of 0.42, which was the lowest individual recall rate across all four tools. There were a total of 550 FP predictions, yielding a precision of 0.120.

Toolbox API predictions on the Drug Dataset were generated from the tb.vitro_rat.3 and tb.vivo_rat.6 models, where the tb.vitro_rat.3 model generated a total of 539 metabolite predictions. Of those predictions, 93 TP predictions of the 179 total reported metabolites were correctly identified. Conversely, there were 86 FN predictions of the 179 reported metabolites, yielding a recall of 0.52. There were a total of 446 FP predictions, yielding a precision of 0.173. The tb.vivo_rat.6 model generated a total of 623 metabolite predictions. Of those predictions, 86 TP predictions of the 179 total reported metabolites were correctly identified. Conversely, there were 83 FN predictions of the 179 total reported metabolites were correctly identified. Conversely, there were 93 FN predictions of the 179 reported metabolites, yielding a recall of 0.48. There were a total of 537 FP predictions, yielding a precision of 0.138.

CTS predictions on the Drug Dataset using cts.chemaxon.3 generated a total of 5713 metabolite predictions. Of those predictions, 131 TP predictions of the 179 total reported metabolites were correctly identified. Conversely, there were 48 FN predictions of the 179 reported metabolites, yielding a recall of 0.73, which was the highest individual recall rate across all four tools. There were a total of 5582 FP predictions, yielding a precision of 0.023.

When the predictions from all four of the tools are aggregated together, a total of 15497 unique metabolite predictions are generated. Of those predictions, 154 TP predictions of the 179 total reported metabolites were correctly identified. Conversely, there were 25 FN predictions of the 179 reported metabolites, yielding a recall of 0.86, which yields a 13% increase in recall rate compared to CTS, the highest performing individual tool. There were a total of 15343 FP predictions, yielding a precision of 0.010.

Literature Dataset Clustering Analysis

Hierarchical clustering analysis of recall against the chemical classes within both datasets was performed and compared across all tools. The result of this analysis for the Literature Dataset is shown in Figure S4. The highest recall rates across all tools were observed for phenanthrenes, diazines, phenylpropanoic acids, azoles, lactams, benzothiazenes, steroids, and piperadines, comprising ~17% of the dataset (10 compounds), where most tools yield high recall rates. Conversely, most tools performed poorly on nucleoside and nucleotide analogues, carboxylic acids, pyrrolines, and organonitrogen compounds, comprising ~12% of the dataset (7 compounds). The remaining ~71% of the dataset (42 compounds) varied greatly in their recall rates, depending on the choice of tool and model. However, in all cases, the aggregated recall rate over all models yielded either matches the highest recall rate among available tools, or improved recall compared across all tools. It is additionally worth noting that, of the 17/28 ClassyFire assigned chemical classes where a mean recall rate of one was achieved for that chemical class, all but one case are classes that account for a single parent chemical in the dataset of 59. The singular case is indoles, which account for 2/59 of the parent chemicals. Thus, recall rates equal to one were attained for \sim 31% of the dataset, whether by individual models, or the aggregation of all model predictions. Examples of consensus recall rate improvement compared to the highest individual model recall rate for specific chemical class groupings include pyrroles (+20% recall), pyrrolines (+20% recall),

benzodiazepines (+17% recall), benzene and substituted derivatives (+6% recall), organooxygen compounds (+7% recall), and naphthalenes (+5% recall).

SMPDB Dataset

A summary of the performance metrics calculated from the predictions from each MetSim tool on the SMPDB Dataset of 59 Drug parent chemicals and their 259 reported phase I and phase II metabolites, is given in Table S5.

BioTransformer predictions on the Literature Dataset using bt.ec.1.cyp450.2.phase2.1 generated a total of 16534 metabolite predictions. Of those predictions, 110 TP predictions of the 259 total reported metabolites were correctly identified. Conversely, there were 149 FN predictions of the 259 reported metabolites, yielding a recall of 0.42. There were a total of 16424 FP predictions, yielding a precision of 0.007.

TIMES predictions on Drug Dataset were generated via the tm.vitro_rat.6 and tm.vivo_rat.6 models, where tm.vitro_rat.6 generated a total of 734 metabolite predictions. Of those predictions, 93 TP predictions of the 259 total reported metabolites were correctly identified. Conversely, there were 166 FN predictions of the 259 reported metabolites, yielding a recall of 0.36. There were a total of 641 FP predictions, yielding a precision of 0.127. The tm.vivo_rat.6 model generated a total of 721 metabolite predictions. Of those predictions, 103 TP predictions of the 259 total reported metabolites, there were 156 FN predictions of the 259 total reported metabolites, 103 TP predictions of the 259 total reported metabolites were correctly identified. Conversely, there were 156 FN predictions of the 259 total reported metabolites, there were a total of 618 FP predictions, yielding a recall of 0.40. There were a total of 618 FP predictions, yielding a precision of 0.143.

Toolbox API predictions on the Drug Dataset were generated from the tb.vitro_rat.3 and tb.vivo_rat.6 models, where the tb.vitro_rat.3 model generated a total of 712 metabolite predictions. Of those predictions, 86 TP predictions of the 259 total reported metabolites were correctly identified. Conversely, there were 173 FN predictions of the 259 reported metabolites, yielding a recall of 0.33, which was the lowest individual recall rate across all four tools. There were a total of 626 FP predictions, yielding a precision of 0.121. The tb.vivo_rat.6 model generated a total of 916 metabolite predictions. Of those predictions, 95 TP predictions of the 259 total reported metabolites were correctly identified. Conversely, there were 164 FN predictions of the

259 reported metabolites, yielding a recall of 0.37. There were a total of 821 FP predictions, yielding a precision of 0.104.

CTS predictions on the Drug Dataset using cts.chemaxon.3 generated a total of 8248 metabolite predictions. Of those predictions, 111 TP predictions of the 259 total reported metabolites were correctly identified. Conversely, there were 148 FN predictions of the 259 reported metabolites, yielding a recall of 0.43, which was the highest individual recall rate across all four tools. There were a total of 8137 FP predictions, yielding a precision of 0.013.

When the predictions from all four of the tools are aggregated together, a total of 23821 unique metabolite predictions are generated. Of those predictions, 166 TP predictions of the 259 total reported metabolites were correctly identified. Conversely, there were 93 FN predictions of the 259 reported metabolites, yielding a recall of 0.64, which yields a 21% increase in recall rate compared to CTS, the highest performing individual tool. There were a total of 23655 FP predictions, yielding a precision of 0.007.

SMPDB Dataset Clustering Analysis

Hierarchical clustering analysis of recall against the chemical classes within both datasets was performed and compared across all tools. The result of this analysis for the SMPDB Dataset is shown in Figure S5. The highest recall rates across most tools were observed for carboxylic acids, phenylpropanoic acids, and morphinans, comprising ~26% of the dataset (15 compounds). Conversely, most tools performed poorly on nucleoside and nucleotide analogues, fatty acyls, benzimidazoles, 5'-deoxyribonucleosides, imidazopyramidines, and diazines, comprising ~20% of the dataset (12 compounds). The remaining ~54% of the dataset (32 compounds) varied greatly in their recall rates, depending on the choice of tool and model. However, in all cases, the aggregated recall rate over all models yielded either matches the highest recall rate among available tools, or improved recall compared across all tools. It is additionally worth noting that, of the 8/27 ClassyFire assigned chemical classes where a mean recall rate of one was achieved for that chemical class, all but one case are classes that account for a single parent chemical in the dataset of 59. The singular case is morphinans, which account for 3/59 of the parent chemicals. Thus, recall rates equal to one were attained for ~17% of the dataset, whether by individual models, or the aggregation of all model predictions. Examples of consensus recall rate improvement

compared to the highest individual model recall rate for specific chemical class groupings include pyridines (+36% recall), anthracyclines (+33% recall), phenol ethers (+16% recall), fatty acyls (+13% recall), benzazepines (+11% recall), stilbenes (+6% recall), organonitrogen compounds (+5% recall), and carboxylic acids (+4% recall).

Figure S1. Truncated YAML hierarchically structured output for Aripiprazole using results from TIMES In Vivo Rat Simulator model.

```
≣ aripiprazole.yaml
                         •
 1 datetime: 2022-04-25_16h56m25s
 2 params:
    depth: 3
    model:
      - In Vivo Rat Simulator v.08.14
    organism: Rat
      site_of_metabolism: false
   software: OASIS TIMES
    version: 2.31.2.82
10 input:
11 casrn: 129722-12-9
    chem_name: Aripiprazole
     dtxsid: DTXSID3046083
      hcd_smiles: 0=C1CCC2=CC=C(C=C2N1)OCCCCN1CCN(CC1)C1=CC=CC(C1)=C1C1
      inchikey: CEUORZQYGODEFX-HXTKINSTNA-N
      smiles: 0=C1NC2C(=CC=C(C=2)OCCCCN2CCN(C3C(C1)=C(C1)C=CC=3)CC2)CC1
    output:
    - precursor:
       casrn: 129722-12-9
       chem_name: Aripiprazole
       dtxsid: DTXSID3046083
      hcd smiles: 0=C1CCC2=CC=C(C=C2N1)OCCCCN1CCN(CC1)C1=CC=CC(C1)=C1C1
       inchikey: CEUORZQYGODEFX-HXTKINSTNA-N
       smiles: 0=C1NC2C(=CC=C(C=2)OCCCCN2CCN(C3C(C1)=C(C1)C=CC=3)CC2)CC1
     successors:
      - enzyme: '[phase I]'
        generation: 1
       mechanism: Oxidative O-Dealkylation Alkylphenyl Ether Oxidative O-Dealkylation
       metabolite:
         casrn: 22246-18-0
          chem_name: 7-Hydroxy-3,4-dihydroquinolin-2(1H)-one
          dtxsid: DTXSID70382941
          hcd smiles: OC1=CC=C2CCC(=O)NC2=C1
          inchikey: LKLSFDWYIBUGNT-KZFATGLANA-N
          smiles: OC1C=C2C(CCC(N2)=0)=CC=1
      - enzyme: '[phase I]
        generation: 1
       mechanism: Aromatic C-Hydroxylation Aromatic Amine C-Hydroxylation
       metabolite:
          casrn: null
          chem name: null
          dtxsid: null
          hcd_smiles: 0C1=CC2CCC(=0)NC=2C=C10CCCCN1CCN(CC1)C1=CC=CC(C1)=C1C1
          inchikey: ANUISDKMSVXQOY-HXTKINSTNA-N
          smiles: OC1C(OCCCCN2CCN(C3C(C1)=C(C1)C=CC=3)CC2)=CC2=C(CCC(N2)=0)C=1
```

Legeneration options		- 🗆 X				
Thresholds Max level 3 P.Obtain 0.1 LogKoW min -4	Rival pathways All possible to level: 1 Phase 2 has no rival Max count 5 Relative P 0.7 Reduce P when multi mappings	Quantity formalism Probabilistic Kinetic				
	Count as path every: Mapping	Transformation				
Transformations in use						
Types Names IDs	Reliability	Expert mode				
 ✓ phase I ✓ phase II ✓ Abiotic Microsomal ✓ Mixture separation ✓ External Hydrolysis 		Metabolize inorganics				
Account repeating transformations Levels back 4						
🗸 ОК	X Cancel	✓ <u>D</u> efault				

Figure S2. Default TIMES model parameters for the In Vitro Rat Liver S9 model.

Legeneration options	S	- 🗆 X
Thresholds Max level 999 P.Obtain 0.02	Rival pathways All possible to level: 1 Phase 2 has no rival Max count 5 Relative P 0.7	Quantity formalism Probabilistic Kinetic
✓ LogKoW min -3	Count as path every: Mapping	fransformation
Transformations in use		
Phase I phase II Abiotic Mixture separation External Hydrolysis	Reliability	 Expert mode Metabolize inorganics
Account repeating tr	ansformations Levels back 4	
🗸 ок	X Cancel	✓ <u>D</u> efault

Figure S3. Default TIMES model parameters for In Vivo Rat Simulator model.

Parameter adjustments in TIMES take place after loading the desired metabolism simulator (either In Vivo Rat Simulator or In Vitro Rat Liver S9). Within the tab corresponding to the simulator, input parameters are accessed via the "Metabolization" button within the Model Options toolbar. In this study, both metabolism simulators are set to the same Max Level of 6, with the probability of obtaining a metabolite (P. Obtain) thresholded at 0.1. For both simulators, the "Max count" parameter that thresholds the maximum number of metabolites per cycle was increased to 10 per cycle. All other parameters were left at their default settings. It is worth noting as well that increasing the "Rival Pathways" parameter to greater than one will typically increase the breadth of a transformation tree out to the selected transformation depth, and that often, transformation depth is maximized at 5 to 6 cycles at most, given phase II elimination rules that terminate transformation pathways within TIMES.

Fig. S4 Hierarchically clustered heatmap of Recall Rate clustered on chemical class as designated by ClassyFire for each choice of metabolism simulator and model applied to the Literature Dataset containing 59 parent chemicals. Model selections are indicated at the bottom of each column of the clustered heatmap as one cycle of the "ecbased", two cycles of "Cyp450", and one cycle of "phaseII" metabolism in BioTransformer (BioTransformer), Three cycles of ChemAxon Human Phase I within CTS (CTS), Toolbox In Vitro Rat Liver S9 (Toolbox Vitro) or In Vivo Rat Simulator (Toolbox Vivo), and TIMES In Vitro Rat Liver S9 (TIMES Vitro) or In Vivo Rat Simulator (TIMES Vivo). Average recall rate for a given chemical class is illustrated by an increasingly dark gradient from zero (white) to unity (dark red) with the actual mean recall rate given in each heatmap cell. (Right) Bar chart of chemical class versus log2 scaled occurrence frequency in the dataset.

Fig. S5 Hierarchically clustered heatmap of Recall Rate clustered on chemical class as designated by ClassyFire for each choice of metabolism simulator and model applied to the SMPDB Dataset containing 59 parent chemicals. Model selections are indicated at the bottom of each column of the clustered heatmap as one cycle of the "ecbased", two cycles of "Cyp450", and one cycle of "phaseII" metabolism in BioTransformer (BioTransformer), Three cycles of ChemAxon Human Phase I within CTS (CTS), Toolbox In Vitro Rat Liver S9 (Toolbox Vitro) or In Vivo Rat Simulator (Toolbox Vivo), and TIMES In Vitro Rat Liver S9 (TIMES Vitro) or In Vivo Rat Simulator (TIMES Vivo). Average recall rate for a given chemical class is illustrated by an increasingly dark gradient from zero (white) to unity (dark red) with the actual mean recall rate given in each heatmap cell. (Right) Bar chart of chemical class versus log2 scaled occurrence frequency in the dataset.

Metsim Model

S16

Figure S6: Average $log(K_{ow})$ values queried from the from the Toolbox API (right, negative values in blue shades, positive values in red shades, zero is white, empty cells returned no $log(K_{ow})$ data) sorted with the chemical class and recall rate hierarchical clustering analysis results from the Drug Dataset (left).

55 0													
0 0		0.5	0.5	0		0.5	0	0.5	- Prepal linids		3.1		
0 0		0.0	0.0	0.1	0.1	0.0	0.2	0.6			0.97		
100 100 100 0 100 0		0.2	0.2	0.1	0.1	0.6	0.2	0.0	- Pyrrolines		3.3		
0 0	L	-0.083	30.083	0.083	0.083	0.083	0	0.083	- Nucleoside and nucleotide analogues		-2.4		
1 1 0.08 0 0.02 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.14 0.22 0.28 0.27 0.2 0.15 0.11 1 0.1 0.11 <th0.11< th=""> <th0.11< th=""></th0.11<></th0.11<>		- 0	0	0	0	0	0	0	- 5'-deoxyribonucleosides		0.56	-	- 4
0.13 0.13 0.027 0.2 0.13 0.13 0.13 0.13 0.13 0.14 0.13 0.14 0.14 0.13 0.14 <td< td=""><td></td><td>0.083</td><td>3 0</td><td>0.083</td><td>0</td><td>0.083</td><td>0</td><td>0</td><td></td><td></td><td>-0.59</td><td></td><td></td></td<>		0.083	3 0	0.083	0	0.083	0	0			-0.59		
0.18 0.18 0.14 0.22 0.33 0.23 <th< td=""><td></td><td>0.13</td><td>0.13</td><td>0</td><td>0</td><td>0.27</td><td>0.2</td><td>0.13</td><td>- Benzimidazoles</td><td></td><td>3.1</td><td></td><td></td></th<>		0.13	0.13	0	0	0.27	0.2	0.13	- Benzimidazoles		3.1		
1 1 1 1 1 1 0 1 Benzothizzines 2.6 0 0 1 1 1 0 0		0.18	0.18	0.14	0.23	0.36	0.23	0.23	- Fatty Acvls		3		
0.5 0.5 1 1 1 0 <td></td> <td>1</td> <td>1</td> <td>1</td> <td>1</td> <td>1</td> <td>0</td> <td>1</td> <td>- Benzothiazines</td> <td></td> <td>2.6</td> <td></td> <td></td>		1	1	1	1	1	0	1	- Benzothiazines		2.6		
0 0 1 1 1 0 0 Thiosthers -0.09 1 1 1 1 1 1 1 1 1		0.5	0.5	1	1	1	0.5	0	- Indenes and isoindenes		4.3		
1 1	FL-	0	0	1	1	1	0	0	- Thioethers		-0.09		
1 1 0.75 0.75 1 1 1 -Piperidines 0.6 0.8 0.6 0.6 1 1 0.6 -Phenylpropanola caids 3.8 0.6 0.67 1 0.77 0.6 -Phenylpropanola caids 3.8 1.3 0.8<		_ 1	1	1	1	1	1	1	- Lactams		3.9		
0.6 0.6 0.6 1 1 0.6 1 1 0.6 1 1 0.6 1 1 0.7 0.7 0.7 1 1 0.7 0.		_ 1		0.75	0.75	1	1	1	- Piperidines				- 2
0.67 1 0.78 0.67 1 0.78 0.77 - Carboxylic acids and derivatives 3 0.8 0.4 0.4 1 1 1 - Benzoxazines 1.9 0.4<		0.6	0.8	0.6	0.6	1	1	0.6	- Phenylpropanoic acids		3.8		2
0.8 0.7 0.5 0		0.67	1	0.67	1	1	0.78	0.67	- Morphinans		1.3		
0.83 0.83 0.72 0.83 0.83 0.72 0.83 0.71 0.51 0.63 0.55 0.5 0		0.8	0.8	0.8	0.8	0.84	0.73	0.77	 Carboxylic acids and derivatives 		3		
0 0 0.33 0.33 1 1 1 -Benzoxtaines 1.9 0.4 <td></td> <td>0.83</td> <td>0.83</td> <td>0.83</td> <td>0.72</td> <td>0.83</td> <td>0.83</td> <td>0.83</td> <td>- Phenanthrenes and derivatives</td> <td></td> <td>2.2</td> <td></td> <td></td>		0.83	0.83	0.83	0.72	0.83	0.83	0.83	- Phenanthrenes and derivatives		2.2		
0.8 0.4 0.5 1 0.5 1 0.5 1 0.5 1 0.5 1 0.5 1 0.5 1 0.5 1 0.5 1 0.5 1 0.5 1 0.5 1 0.5 1 0.5 1		0	0	0.33	0.33	1	1	1	- Benzoxazines				
0.4 0.5 1 0.5 1 1.5 1 1.5 1 1.5 1 1.5 1 1.5 1.5 1.6 0.5 0.5 0.5 0.5 1 0.5 1 1.5 1 1.5 1.5 1.5 1.5 1.6 1.7	4	0.8	0.8	0.4	0.4	1	1	1	- Benzothiazepines		1.9		
0.5 1 0.55 0.5 0.5 1 0.67 0.33 0.83 0.5 1 0.67 0.3 0.83 0.67 0.3 0.83 0.67 0.33 0.83 0.67 0.72 Naphthalenes 0.26 0.33 0.33 0.33	1	0.4	0.4	0.4	0.2	1	1	0.8	- Linear 1,3-diarylpropanoids	ass	9.5		
0.5 1 0.5 1		0.5	0.5	0.5	0.5	1	1	1	- Quinolines and derivatives	5			(Mo
0.36 0.36 0.36 0.47 0.15 0.52 0.75 0.5 0.52 0.75 0.5		0.5	0.5	0.5	0.5	0.6	0.1	0.5	- Diazines	lica	2.5		-0 Ř
0.5 0.75 0.5 0.25 0.75 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.6 0.4 0.4 0.8 0.4 0.6 0.4 0.4 0.8 0.4 0.6 Pyrroles 3.4 0.5 0.5 0.5 0.5 1 0.5 1 0.5 1 5.1 - Steroids and steroid derivatives 2 0.5 0.5 0.5 1 0.5 1 - Steroids and steroid derivatives 2.6 0.67 0.33 0.83 0.5 1 0.67 0.5 0.5 0.5 0.5 0.5 0.67 0.33 0.83 0.67 1 0.67 0.5 0.75 Perzatines	r.c	0.36	0.36	0.45	0.36	0.71	0.15	0.52	- Organonitrogen compounds	nen	2.2		Ő
0.6 0.6 0.4 0.4 0.8 0.4 0.6 -Pyrroles 0.5 0.5 0.5 0.5 0.5 0.5 1 0.5 1 -Steroids and steroid derivatives 2 0.5 0.5 0.5 0.5 1 0.5 1 0.5 1 -Steroids and steroid derivatives 2 0.5 0.5 0.5 0.5 1 0.5 1 0.67 0.3 0.83 0.81 -Steroids and steroid derivatives 2.6 0.67 0.33 0.83 0.67 1 0.67 0.5 0.68 0.72 0.72 0.76 0.83 0.67 0.72 0.72 0.78 0.72 0.72 Naphthalenes 3.2 0.72 0.56 0.5 0.58 0.87 0.77 -Deizainanes 5.3 3.2 0.29 0.14 0.29 0.29 0.86 0.86 0.57 Benzxepines 1.9 0.33 0.33 0.33 0.33 0.35 5.3 Stilbenes 6.3 0.46 0.46 <td></td> <td>0.5</td> <td>0.75</td> <td>0.5</td> <td>0.25</td> <td>0.75</td> <td>0.5</td> <td>0.5</td> <td>- Azoles C</td> <td>5</td> <td>3.5</td> <td></td> <td></td>		0.5	0.75	0.5	0.25	0.75	0.5	0.5	- Azoles C	5	3.5		
1.1 0.46 0.59 0.58 0.48 0.76 Benzene and substituted derivatives 3.4 0.5 0.5 0.5 0.5 1 0.5 1 0.5 1 0.5 1 0.5 1 0.5 1 0.5 1 0.5 1 0.5 1 0.5 1 0.5 1 0.67 1 0.67 0.33 0.83 0.67 1 0.67 0.5 0.5 0.5 0.65 0.93 0.82 0.6 Benzodiazepines 2.6 0.67 0.33 0.83 0.67 1 0.67 0.5 1 0.67 0.5 1 0.67 0.5 1 0.67 0.5 1 0.67 0.5 1 0.67 0.5 1 0.67 0.5 1 0.67 0.5 1 0.67 0.5 1 0.67 0.57 1 0.67 0.57 1 0.67 Naphthalenes 3.2 3.2 3.2 3.2 3.2 3.2 3.3 3.3 3.3 3.3 3.3 3.3 3.3<		0.6	0.6	0.4	0.4	0.8	0.4	0.6	- Pyrroles		2.4		
0.5 0.5 0.5 0.5 1 0.5 1 0.5 1 0.5 1 0.5 1 0.5 1 0.5 1 0.5 1 0.5 1 0.5 1 0.5 1 0.5 1 0.5 1 0.5 1 0.83 0.83 -Triazines -0.032 0.67 0.33 0.83 0.67 1 0.67 0.5 1 0.67 0.5 1 0.67 0.5 0.68 0.67 0.5 0.67 0.67 0.5 0.67 0.67 0.57 0.72 0.72 0.72 0.78 0.72 0.72 Naphthalenes 3.2 3.		0.51	0.46	0.59	0.59	0.86	0.48	0.76	- Benzene and substituted derivatives		3.4		
0.5 0.5 0.5 0.5 1 0.8 1 0.8 1 0.8 1 0.83 0.83 - Triazines 2.6 0.67 0.33 0.83 0.67 1 0.67 0.5 0.5 0.8 0.67 1 0.67 0.5 - Indoles and derivatives 4.2 0.49 0.42 0.5 0.65 0.5 0.78 0.72 0.72 Naphthalenes 3.2 0.72 0.56 0.5 0.5 0.78 0.72 0.72 Naphthalenes 3.2 0.4 0.4 0.2 0.2 1 0.6 1 -Diazinanes 4 0.33 0.33 0.33 0.3 0.67 - Anthracyclines 6.3 0.35 0.24 0.29 0.65 0.59 0.53 Stilbenes 6.3 0.46 0.48 0.38 0.74 0.65 0.61 -Phenol ethers 3.3 0.44 0.48 0.38 0.74 0.65 0.61 -Phenol ethers 3.3 0.48 0.48	-	0.5	0.5	0.5	0.5	1	0.5	1	- Steroids and steroid derivatives		0.022		
0.67 0.33 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.65 0.65 0.65 0.65 0.67 0.67 0.5 0.68 0.67 0.5 0.68 0.67 0.5 0.66 0.93 0.82 0.6 - Benzazepines 3.2 3.3 3.3 3.3 3.	ſ	0.5	0.5	0.5	0.5	1	0.5	1	- Triazines		-0.032		
0.3 0.3 0.3 0.65 0.67 0.7 0.65 0.93 0.82 0.6 -Benzazepines 3.2 0.49 0.42 0.5 0.65 0.93 0.82 0.6 -Benzazepines 3.2 0.72 0.56 0.5 0.5 0.78 0.72 -Naphthalenes 3.2 0.4 0.4 0.2 0.2 1 0.6 1 -Diazinanes 5.3 0.29 0.14 0.29 0.29 0.86 0.86 0.57 Benzoxepines 4 0.33 0.33 0.33 0.33 0.33 0.5 0.57 Benzoxepines 6.3 0.35 0.24 0.29 0.65 0.59 0.53 Stilbenes 6.3 0.46 0.48 0.38 0.74 0.65 0.61 -Phenol ethers 3.3 0.48 0.48 0.38 0.74 0.65 0.61 -Phenol ethers 3.3 0 0.17 0.25 0.58 0.58 0.42 Lignan lactones 0.73 0.33		0.67	0.33	0.03	0.5	1	0.63	0.63			4.2		
0.49 0.42 0.3 0.63 0.63 0.62 0.6 0.62 0.6 0.62 0.6 0.62 0.6 0.62 0.6 0.62 0.6 0.62 0.6 0.62 0.6 0.62 0.6 0.62 0.72 0.8 0.72 0.72 Naphthalenes 3.2 0.4 0.4 0.2 0.2 1 0.6 1 - Diazinanes 5.3 0.29 0.14 0.29 0.29 0.86 0.86 0.57 - Benzoxepines 4 0.33 0.33 0.33 0.33 0.3 1 0.5 0.67 - Anthracyclines 6.3 0.35 0.24 0.29 0.65 0.59 0.53 Stilbenes 6.3 0.46 0.48 0.38 0.74 0.65 0.61 - Phenol ethers 3.3 0.48 0.48 0.38 0.74 0.65 0.61 - Phenol ethers 3.3 0 0.17 0.28 0.58 0.58 0.42 Lignan lactones 0.73 0.73 4 <td></td> <td>0.5</td> <td>0.5</td> <td>0.03</td> <td>0.67</td> <td>1</td> <td>0.07</td> <td>0.5</td> <td>- Indoles and derivatives</td> <td></td> <td>3.2</td> <td></td> <td>2</td>		0.5	0.5	0.03	0.67	1	0.07	0.5	- Indoles and derivatives		3.2		2
0.12 0.30 0.33 0.12		0.49	0.42	0.5	0.05	0.93	0.02	0.0	- Benzazepines		3.2		
Orage Orage <th< td=""><td></td><td>0.72</td><td>0.30</td><td>0.3</td><td>0.3</td><td>0.70</td><td>0.72</td><td>1</td><td>- Naphthalenes</td><td></td><td>53</td><td></td><td></td></th<>		0.72	0.30	0.3	0.3	0.70	0.72	1	- Naphthalenes		53		
0.33 0.33 0.33 0.33 0.33 0.33 0.33 1 0.5 0.67 Anthracyclines 0.35 0.24 0.29 0.65 0.59 0.53 Stilbenes 6.3 0.46 0.42 0.29 0.65 0.59 0.53 Stilbenes 6.3 0.46 0.48 0.38 0.74 0.65 0.61 Phenol ethers 3.3 0 0.17 0.42 0.58 0.58 0.42 Lignan lactones 0.73 0.33 1 0 0.67 1 1 0.33 I 0.33 I 0.42		0.29	0.14	0.29	0.29	0.86	0.86	0.57	- Benzovenines		4		
0.35 0.24 0.29 0.65 0.59 0.59 0.53 Stilbenes 6.3 0.46 0.42 0.29 0.65 0.59 0.53 Stilbenes 3.3 0.46 0.42 0.48 0.38 0.74 0.65 0.61 Phenol ethers 3.3 0 0.17 0.20 0.58 0.58 0.61 Phenol ethers 3.3 0 0.17 0.42 0.58 0.58 0.42 Lignan lactones 0.73		0.33	0.33	0.33	0.33	1	0.5	0.67	- Anthracyclines		1.9		
0.46 0.48 0.43 0.43 0.44 0.43 0.43 0.44 0.44 0.45 0.44 0.45 0.44 0.45 0.48 0.33 0.33 0.33 0.33 0.33 0.42 0.45 0.48 0.38 0.74 0.65 0.61 - Phenol ethers 3.3 0.73 4 0.33 1 0 0.67 1 1 0.33 - 6xcoumarans 4.2 4		0.35	0.24	0.29	0.29	0.65	0.59	0.53	- Stilbenes		6.3		
0.48 0.42 0.48 0.42 0.42 0.42 0.42 0.42 0.42 0.42 0.42 0.42 0.42 0.42 0.42 0.42 0.42 0.033 1 0 0.67 1 1 0.33 1 0.42 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2		0.46	0.46	0.32	0.25	0.79	0.68	0.73	- Organooxygen compounds		3.3		
0 0.17 0.42 0.58 0.58 0.58 0.42 - Lignan lactones 0.734		0.48	0.45	0.48	0.38	0.74	0.65	0.61	- Phenol ethers		3.3		
- 0.33 1 0 0.67 1 1 0.53 Isocoumarans 4.2		0	0.17	0.42	0.58	0.58	0.58	0.42	- Lignan lactones		0.73		1
		0.33	1	0	0.67	1	1	0.33	- Isocoumarans		4.2		4
0.45 0.64 0.45 0.64 1 0.55 0.27 - Pyridines and derivatives 1	ų	0.45	0.64	0.45	0.64	1	0.55	0.27	- Pyridines and derivatives		1		
- 0.25 0.5 0.25 0.5 1 1 0.25 - Camptothecins	4	0.25	0.5	0.25	0.5	1	1	0.25	- Camptothecins				
0.17 0.5 0.17 0.5 0.83 0.67 0.33 - Phenols 0.27	Ļ	0.17	0.5	0.17	0.5	0.83	0.67	0.33	- Phenols		0.27		
		2	Q	9	٥٨	ols	S	er					
		x Vit	s Vit	× Vi	s <	I Toc	IJ	orm					
		olbo	ME	oqlo	IME	A		anst	0.00 0.25 0.50 0.75 1.00				
P P P F E Recall Rate		To	Ξ	To	F			3io Tr	Recall Rate				

Metsim Model

S17

Table S1. Comparison of performance metrics for BioTransformer 2019 validation dataset to current BioTransformer predictions for human tissue metabolism in absence of gut microbiome predictions.

BioTransformer	Literatu	Combined Individual	Sequential Runs	Sequential Runs
Single-Step Human	re	Runs	1x Cyp450	1x EC-Based
Metabolism	Values	1x cyp450	(CypReact)	1x Cyp450
No Gut (hgut)		(CypReact)	1x EC-Based	(CypReact)
		1x EC-based	1x Phase II	1x Phase II
		1x Phase II		
True Positives	188	150	151	158
False Positives	198	184	1765	1271
False Negatives	26	63	62	55
Total No. of	386	334	1916	1429
Predictions				
Total Precision	0.49	0.45	0.08	0.11
Total Recall	0.88	0.70	0.71	0.74
Total No. of	224	213*	213*	213*
Reported				
Metabolites				

* Metabolites for the literature SDF were counted manually before automated processing in

Python, and after processing in Python. Counted 213 metabolites instead of 224.

Table S2. Comparison of performance metrics for BioTransformer validation dataset to current
BioTransformer predictions for single-step phase I metabolism predictions.

BioTransformer	Literat	1x
Single-Step	ure	Cyp450
Cyp450	Values	(CypRe
(CypReact)		act)
True Positives	162	141
False Positives	188	186
False Negatives	18	45
Total No. of	350	327
Predictions		
Total Precision	0.46	0.43
Total Recall	0.90	0.76
Total No. of	180	186*
Reported		
Metabolites		

* Metabolites for the literature SDF were counted manually before automated processing in Python, and after processing in Python. Counted 186 metabolites instead of 180.

Table S3. Comparison of TIMES performance metrics against training set observed maps with parameters set to match current prediction parameters.

TIMES	In Vitro Rat Liver S9	In Vivo Rat Simulator	
Version 2.31.2.82	Version 12.18	Version 08.14	
	438 Parents in	701 Parents In	
	Training Set	Training Set	
	112 Out of Domain	204 Out of Domain	
	Documented Recall	Documented Recall	
	0.81	0.77	
True Positives	682	1409	
False Positives	623	1253	
False Negatives	89	640	
Total No. of Predictions	1305	2662	
Total Precision	0.52	0.77	
Total Recall	0.88	0.69	
Total No. of Reported	771	2049	
Metabolites			

JCIM 59 Drugs	CTS ChemAx on	BioTransfor mer	Toolbo x API In Vivo	Toolbo x API	TIMES In Vivo	TIME S	Aggreg ate of All
NSAIDs	Phase I 3 cycles	Based, 2x Cyp450, 1x Phase II	Rat Simulat or	Vitro Rat Liver	Simulat or 6 cycles	Vitro Rat Liver	Models
		4 cycles	Phase I	S9 Phase I		S9 6 cycles	
True Positives	131	111	86	93	75	83	154
False Positives	5582	11091	537	446	550	579	15343
False Negatives	48	68	93	86	104	96	25
Total No. of Predictio ns	5713	11202	623	539	625	662	15497
Total Precision	0.023	0.010	0.138	0.173	0.120	0.125	0.010
Total Recall	0.73	0.62	0.48	0.52	0.42	0.46	0.86

Table S4. Predictive performance characteristics for the Phase I metabolite relationships in the Literature Dataset.

Total No.	179	179	179	179	179	179	179
of							
Reported							
Metabolit							
es							

Table S5. Predictive performance characteristics for the Phase I and Phase II metabolite relationships in the SMPDB Dataset.

SMPDB	CTS	BioTransfor	Toolbo	Toolbo	TIMES	TIME	Aggreg	
59 Drugs	ChemAx	mer	x API	x API	In Vivo	S	ate of	
J Drugs	on	1x EC-	In Vivo	In	Rat	In	All	
	Phase I	Rased	Rat	Vitro	Simulat	Vitro	Models	
	I hase I	Dascu,	Simulat	Rat	or	Rat		
	3 cycles	2x Cyp450,	or	Liver	01	Liver		
		1x Phase II	01	So	6 cycles	So		
			Phase I	39		57		
		4 cycles		Phase		6		
				Ι		cycles		
True	111	110	95	86	103	93	166	
Positives								
False	8137	16424	821	821	618	641	23655	
Positives								
False	148	149	164	173	156	166	93	
Negatives								
Total No	0740	16524	016	710	721	724	22921	
f otal No.	0240	10334	910	/12	/21	/34	23021	
01 Duadiatia								
Predictio								
ns								
Total	0.013	0.007	0.104	0.121	0.143	0.127	0.007	
Precision								
Total	0.43	0.42	0.37	0.33	0.40	0.36	0.64	
Recall								

Total No.	259	259	259	259	259	259	259
of							
Reported							
Metabolit							
es							

Tool	Spearman Coefficient	P-Value
	(LogKow & Recall	
	Rate)	
BioTransformer	0.26	0.009
Toolbox In Vitro Rat Liver	0.19	0.004
S 9		
Toolbox In Vivo Rat	0.20	0.044
Simulator		
TIMES In Vitro Rat Liver S9	0.19	0.059
TIMES In Vivo Rat	0.15	0.144
Simulator		
CTS	0.31	0.002
Ensemble	0.27	0.006

Table S6. Spearman Correlation analysis of $log(K_{ow})$ on Recall Rate with P-values.

References

1. Boyce, M.; Meyer, B.; Grulke, C.; Lizarraga, L.; Patlewicz, G., Comparing the performance and coverage of selected in silico (liver) metabolism tools relative to reported studies in the literature to inform analogue selection in read-across: A case study. *Comput Toxicol* **2022**, *21*, 1-15.

2. Djoumbou-Feunang, Y.; Fiamoncini, J.; Gil-de-la-Fuente, A.; Greiner, R.; Manach, C.; Wishart, D. S., BioTransformer: a comprehensive computational tool for small molecule metabolism prediction and metabolite identification. *J Cheminformatics* **2019**, *11*.

3. Tian, S. Y.; Cao, X.; Greiner, R.; Li, C.; Guo, A. C.; Wishart, D. S., CyProduct: A Software Tool for Accurately Predicting the Byproducts of Human Cytochrome P450 Metabolism. *J Chem Inf Model* **2021**, *61* (6), 3128-3140.

4. Tian, S. Y.; Djoumbou-Feunang, Y.; Greiner, R.; Wishart, D. S., CypReact: A Software Tool for in Silico Reactant Prediction for Human Cytochrome P450 Enzymes. *J Chem Inf Model* **2018**, *58* (6), 1282-1291.

5. McKerns, M. M.; Aivazis, M. A. G. Pathos: A Framework for Heterogeneous Computing. https://uqfoundation.github.io/project/pathos.

6. McKerns, M. M.; Strand, L.; Sullivan, T.; Fang, A.; Aivazis, M. A. G., Building a Framework for Predictive Science. *Proceedings of the 10th Python in Science Conference* **2011**.

7. Mekenyan, O. G.; Dimitrov, S. D.; Pavlov, T. S.; Veith, G. D., A systematic approach to simulating metabolism in computational toxicology. I. The TIMES heuristic modelling framework. *Curr Pharm Design* **2004**, *10* (11), 1273-1293.

8. Mekenyan, O.; Dimitrov, S.; Pavlov, T.; Dimitrova, G.; Todorov, M.; Petkov, P.; Kotov, S., Simulation of chemical metabolism for fate and hazard assessment. V. Mammalian hazard assessment. *Sar Qsar Environ Res* **2012**, *23* (5-6), 553-606.

Yordanova, D.; Kuseva, C.; Tankova, K.; Pavlov, T. S.; Chankov, G.; Chapkanov, A.; Gissi, A.; Sobanski, T.; Schultz, T. W.; Mekenyan, O. G., Using metabolic information for categorization and read-across in the OECD QSAR Toolbox. *Comput Toxicol* 2019, *12*, 100102.
 Piechota, P.; Cronin, M. T. D.; Hewitt, M.; Madden, J. C., Pragmatic Approaches to Using Computational Methods To Predict Xenobiotic Metabolism. *J Chem Inf Model* 2013, *53* (6), 1282-1293.

11. Jewison, T.; Su, Y. L.; Disfany, F. M.; Liang, Y. J.; Knox, C.; Maciejewski, A.; Poelzer, J.; Huynh, J.; Zhou, Y.; Arndt, D.; Djoumbou, Y.; Liu, Y. F.; Deng, L.; Guo, A. C.; Han, B.; Pon, A.; Wilson, M.; Rafatnia, S.; Liu, P.; Wishart, D. S., SMPDB 2.0: Big Improvements to the Small Molecule Pathway Database. *Nucleic Acids Res* **2014**, *42* (D1), D478-D484.

12. Frolkis, A.; Knox, C.; Lim, E.; Jewison, T.; Law, V.; Hau, D. D.; Liu, P.; Gautam, B.; Ly, S.; Guo, A. C.; Xia, J. G.; Liang, Y. J.; Shrivastava, S.; Wishart, D. S., SMPDB: The Small Molecule Pathway Database. *Nucleic Acids Res* **2010**, *38*, D480-D487.

13. Virtanen, P.; Gommers, R.; Oliphant, T. E.; Haberland, M.; Reddy, T.; Cournapeau, D.; Burovski, E.; Peterson, P.; Weckesser, W.; Bright, J.; van der Walt, S. J.; Brett, M.; Wilson, J.; Millman, K. J.; Mayorov, N.; Nelson, A. R. J.; Jones, E.; Kern, R.; Larson, E.; Carey, C. J.; Polat, I.; Feng, Y.; Moore, E. W.; VanderPlas, J.; Laxalde, D.; Perktold, J.; Cimrman, R.; Henriksen, I.; Quintero, E. A.; Harris, C. R.; Archibald, A. M.; Ribeiro, A. N.

H.; Pedregosa, F.; van Mulbregt, P.; Contributors, S., SciPy 1.0: fundamental algorithms for scientific computing in Python. *Nat Methods* **2020**, *17* (3), 261-272.