Dose-Response, Dosimetric, and Metabolic Evaluations of Replacement PFAS Perfluoro-(2,5,8-trimethyl-3,6,9-trioxadodecanoic) acid (HFPO-TeA)

Aero Renyer, Krishna Ravindra, Barbara A. Wetmore, Jermaine L. Ford, Michael DeVito, Michael F. Hughes, Leah C. Wehmas, and Denise K. MacMillan

Supporting Information

Supporting Text S1: Chemicals

Chemicals used for solvent and mobile phases include methanol (MeOH), water (H₂O), and acetonitrile (ACN) which were LC/MS grade and purchased from Honeywell Burdick & Jackson (Charlotte, NC, USA). Ethanol (EtOH) used as a solvent was ACS grade and purchased from Honeywell Burdick & Jackson. Ammonium formate (BioUltra purity) and ammonium acetate (99% pure) were used as mobile phase additives and obtained from Millipore Sigma (St. Louis, MO, USA). Formic acid (FA; 97.5% pure) was also used as an additive; it was purchased from Honeywell Fluka (Charlotte, NC, USA). Detailed information for chemicals used for each analysis may be found in Table S1.

Supporting Text S2: Thyroid Hormone Chemicals and Analysis

3,3',5-Triiodothyronine (Chemical Abstract Service Registry Number (CASRN) 6893-02-3 | U.S. Environmental Protection Agency (U.S. EPA) Distributed Structure-Searchable Toxicity (DSSTox) substance identifier (DTXSID) DTXSID8023216 | T3; > 99% pure), mass-labeled 3,3',5-triiodothyronine hydrochloride (¹³C₆-T3; > 98% pure), 3,3',5'-triiodothyronine (CASRN 5817-39-0 | DTXSID3046908 | rT3; > 98% pure), mass-labeled 3,3',5'-triiodothyronine hydrochloride (¹³C₆-rT3; > 99% pure), L-thyroxine (CASRN 300-30-1 | DTXSID0023662 | T4; > 98% pure), and mass-labeled L-thyroxine (¹³C₆-T4; > 98% pure) were purchased from Cerilliant Corporation (Round Rock, Texas, USA).

Briefly, a 20 μ L aliquot of plasma from each sample was loaded into individual wells of a 96-well collection plate. They were spiked with 5 μ L of a 40 ng/mL ¹³C₆-T3, ¹³C₆-rT3 and ¹³C₆-T4 mixed solution followed by 1N hydrochloric acid (HCl) (20 μ L) (36.5-38%, Fisher Scientific. Waltham, MA, USA), H₂O (100 μ L), and a 50:50 H₂O/ACN solution (vol/vol) (60 μ L) containing 0.1% formic acid (FA). Samples were vortexed, incubated at 37 °C for 2 hours, and brought to room temperature. They were diluted with an aqueous 0.1% acetic acid solution (LC/MS grade, Honeywell Fluka) and vortexed. The SPE well plates (Evolute CX, 96-well SPE plate, 10 mg, 1 mL, Biotage, Charlotte, NC, USA), processed with a positive pressure manifold, were conditioned with methanol followed by an aqueous 0.1% acetic acid solution prior to sample loading with low pressure. Plate wells were washed with 0.1% acetic acid followed by methanol. Thyroid hormones were eluted into a collection plate with 2.5% ammonium hydroxide (NH₄OH) (28-30%, Thermo Fisher Scientific, Waltham, MA, USA) in methanol. Extracts were then evaporated to dryness with nitrogen using a Turbovap (Biotage) then reconstituted in 100 μ L of 25:75 ACN/H₂O (vol/vol) with 0.1% acetic acid. Extracts were stored in amber micro-sampling vials (Agilent Technologies, Santa Clara, CA, USA) prior to instrumental analysis.

Samples were quantitated against matrix-matched calibration curves containing a minimum of 5 points spanning the range 0.005 - 25.00 ng/mL. Calibration standards were made by combining T3, rT3, and T4 analytes with the ¹³C₆-rT3, ¹³C₆-rT3, and ¹³C₆-rT4 internal standards then with commercial rat plasma. The standards were extracted using the above procedure. Calibration curves had a quadradic fit with a correlation coefficient ≥ 0.995 . Matrix blanks were analyzed with each sample set and were below the limit of quantitation, 0.005 ng/mL plasma.

Supporting Text S3: In Vivo Statistics

All in vivo results values are reported as mean \pm one standard deviation (SD). Statistical evaluation of in vivo data was conducted using a two-way analysis of variance (ANOVA) and Dunnett's Test, both at α = 0.05 significance level, on GraphPad Prism v9.5.1.

Supporting Text S4: Plasma Dosimetry Chemicals, Materials, and Analysis

Sprague Dawley rodent plasma (pooled, mixed sex) collected with ethylenediaminetetraacetic acid (EDTA) and sterile filtered (0.2 µm) was obtained from BioIVT (Westbury, NY, USA) and stored at -80 °C until use as the control matrix for generating calibration curves and as the matrix blank during plasma sample analysis. The HFPO-TeA (98.97% pure) used for calibration curve preparation was obtained from Oakwood Products Inc. (West Columbia, South Carolina, USA). Unlabeled perfluorohexadecanoic acid (CASRN 67905-19-5 | DTXSID1070800 | PFHxDA; \geq 98% pure) was obtained from Cambridge Isotope Laboratories (Tewksbury, MA, USA) to serve as the internal standard since a labeled HFPO-TeA standard was not commercially available.

Aliquots (25 μ L) were denatured with MeOH and H₂O containing 0.1 M FA and then crashed using ACN. Volumes of MeOH, FA, and ACN were determined by the anticipated sample concentrations of HFPO-TeA: 20-1,338 ng HFPO-TeA/mL plasma = 5 μ L MeOH + 100 μ L FA + 500 μ L ACN; 491- 80,280 ng HFPO-TeA/mL plasma = 100 μ L MeOH + 875 μ L FA then 50 μ L subsample removed and crashed with 950 μ L ACN. Anticipated sample ranges were intentionally overlapped to account for HFPO-TeA concentration differences due to biological variability among the dose groups. The internal standard PFHxDA was added prior to the ACN crash. Samples were vortexed after the addition of each solvent. After the addition of all solvents, samples were stored at -20 °C for 30 min then centrifuged at 25,000 × g for 30 min. Supernatants were collected and stored at -20 °C prior to analysis.

Samples were quantitated against matrix-matched calibration curves containing a minimum of 5 points spanning the range 20 – 80,280 ng/mL plasma. Calibrants were prepared by spiking commercial rat plasma (BioIVT) with HFPO-TeA and PFHxDA and then extracted in the same manner as study samples. Calibration curves had a quadradic fit with a correlation coefficient \geq 0.995.

Supporting Text S5: Normalization of Dosimetry Data Calculations

Percent dose of HFPO-TeA in plasma was calculated using the observed plasma concentrations and the average plasma volume for Sprague Dawley rats [1]. The density of plasma was then used to convert from mL plasma to grams plasma for ease of comparison to the liver percent dose data [2]. Average percent dose of HFPO-TeA in liver was calculated using the observed liver concentrations and liver weights. These calculations allow for a comparison of the potential saturation of available proteins in both matrices.

Supporting Text S6: Liver Dosimetry Chemicals, Materials, and Analysis

Sprague Dawley rodent liver (unidentified, mixed sex) was obtained from BioIVT and stored at -80 °C until use as the matrix substitute for generating calibration curves and as the matrix blank during sample analysis. HFPO-TeA used for calibration curve preparation and the internal standard PFHxDA were the same as for the plasma dosimetry.

Sample aliquots (10 mg) were placed into 2 mL lysing tubes containing 1.4 mm ceramic beads (MP Biomedicals, Irvine, CA, USA) and then combined with 200 μ L of ACN containing 0.1% FA and 10 ng of PFHxDA. Samples were homogenized using an OMNI Bead Ruptor (OMNI International, Kennesaw, GA, USA) with the following settings: 2 cycles, 60 second cycle time, 5.5 m/sec speed, and 30 second dwell time. The sample was centrifuged at 26,000 x g for 1 hour, the supernatant transferred to a separate

tube, and then further crashed with 200 μ L ACN. This was repeated twice more to generate a final combined supernatant volume of 600 μ L. Supernatants were stored at -20 °C prior to analysis.

Samples were quantitated against matrix-matched calibration curves containing a minimum of 5 points spanning the range 0.99 - 141 ng/mg liver (wet weight, ww). For the calibration standards, commercial rat liver (BioIVT) was spiked with HFPO-TeA and PFHxDA, homogenized, and extracted using the above procedure. Calibration curves had a quadradic fit with a correlation coefficient ≥ 0.995 .

Supporting Text S7: Plasma-to-Liver Partitioning Calculations

Concentrations of HFPO-TeA in liver and plasma were used to calculate experimental K_P values for both sexes across all dose levels using Equation A [3-5].

$$(\mathbf{A}) \mathbf{K}_{p} = \frac{Concentration_{organ}}{Concentration_{plasma}}$$

Supporting Text S8: Non-Targeted Analysis Method and Data Processing

Each sample batch included a mobile phase blank and solvent blank to monitor for the presence of laboratory contamination, and a system suitability sample consisting of the set of isotopically labeled PFAS tracer compounds spiked into extraction solvent to monitor instrument performance prior to sample analysis. The mass spectrometer was operated in negative ion ESI mode. Eluents and the column used were the same as for targeted analysis. The LC gradient used is found in Table S8. Non-targeted data were collected using both information dependent analysis (IDA) and data independent analysis (sequential window acquisition of all theoretical ions; SWATH) modes. Mass calibration was verified to within 2 ppm daily before analysis and after every 5 injections. Instrument conditions are presented in Table S6. Data processing, library searching, and formula finding were performed using Sciex software package OS 3.0 with details outlined in Table S1. A high-resolution, exact mass spectral library created in house from IDA scans of commercially available PFAS standards analyzed on the same mass spectrometer as the samples and using the same instrument parameters was used for library searches. Additionally, peak picking and alignment, normalization and statistical analysis were performed with Sciex MarkerView 1.3.1 with details outlined in Table S2. The most likely ratio (MLR) method was used for normalization of the peak abundances of sample replicates before normalization between sample groups [6].

Parameter	Value
Workflow	Non-Targeted Screening
Integration Algorithm	MQ4
Library Searching Algorithm	Smart Confirmation Search
Library	In House PFAS
Precursor Mass Tolerance, Da	0.4
Fragment Mass Tolerance, Da	0.4
Formula Finder Mass Tolerance, ppm	5
Formula Finder Compound Type	Man-Made
Peak Detection Minimum Retention Time	1.5
Peak Detection Sensitivity	Exhaustive

Table S1: Data processing parameters used with Sciex OS 3.0.

Area Ratio Threshold	0
(Unknown/Control)	Z
Group Peaks by Adduct or Charge	Yes

Table S2: Data processing parameters used with Sciex MarkerView 1.3.1.

Process	Parameter	Value
	Experiment	TOFMS
	Minimum Retention Time, min	1
	Subtraction Offset, scans	10
Posk Posking	Subtraction Multiplication Factor	1.3
I Cak I Caking	Noise Threshold	2
	Minimum Spectral Peak Width, Da	0.01
	Minimum Retention Time Peak	2
	Width, scans	2
Alignment and Filtering	Perform Background Subtraction	Yes
	Chemical Noise Intensity	15
Multiplier		1.5
Maximum Number of Peaks		5000
	Intensity Threshold	2
	Isotope Filtering	No
	Remove Peaks in <, Samples	2
Retention Time Correction		Yes
Correction Type		Linear
Mass Tolerance		5 ppm
	0.5	

Supporting Text S9: Hepatocyte Metabolic Stability Assay Materials, Chemicals, and Calculations

Pooled human and rat cryopreserved primary hepatocyte suspensions were both obtained from BioIVT, a US Food and Drug Administration-licensed and inspected donor center, and produced using non-transplantable tissue. The human 50-donor pool selected from BioIVT's commercially available, prepooled lots was confirmed to have 85% post-thaw viability on the day of the experiment using trypanblue exclusion. The rodent suspension was comprised of a 24-donor pool of mixed sex Sprague Dawley rat hepatocytes and was confirmed to have 78% viability on the day of the experiment. Vendor-generated metabolic characterization information was reviewed for both lots and deemed acceptable prior to study start. William's E media, dexamethasone (98% pure), and cell maintenance cocktail B were obtained from Thermo Fisher Scientific (Waltham, MA, USA), the OptiThaw hepatocyte kit from Sekisui/Xenotech (Tokyo, Japan), and the trypan blue s (Sekisui/ Xenotech, Tokyo, Japan) and the trypan blue solution from Bio-Rad (Hercules, CA, USA).

The chemicals HFPO-DA (98.97% pure), HFPO-TA (97% pure), and HFPO-TeA (94.8% pure) used for assays were procured through US EPA contract #68HE0D18D0001 with Evotec Inc. (Branford, CT, USA) which provided dosing solutions solubilized in 95% ethanol. Mass-labeled ¹³C₃-HFPO-DA (> 98% pure) was obtained from Wellington Laboratories and served as an internal standard. Propanolol (\geq 98%

pure) from Millipore Sigma and phenacetin (≥ 98% pure) from Sigma Aldrich were used as assay reference compounds.

Hepatic metabolic clearance data was plotted in semi-log format (In concentration vs. time) with three replicates at each time point as previously described [7]. Linear regression analysis in conjunction with a standard F-test was used to determine whether the slope of the line (indicative of chemical clearance) was significantly different from 0. Equations (B) and C) described below were used to calculate chemical half-life (T $\frac{1}{2}$) and intrinsic clearance (Clint) with units of μ L/ (minute*million hepatocytes). In equation (D), the scalar 2000 is used to adjust assay cell number up to be consistent with units of 1 million cells in the Clint equation.

(B)
$$k = -(slope)$$

(C) $T_{\frac{1}{2}} = \frac{0.693}{k}$
(D) $Cl_{int} = \frac{(2000 * 0.693)}{T_{\frac{1}{2}}}$

Supporting Text S10: Plasma Protein Binding Materials, Chemicals, Assay Design, and Calculations

Human plasma and Sprague Dawley rodent plasma were obtained from BioIVT. Human plasma was obtained from de-identified donors (5 male, 5 female) ranging in age from 20-50 years and pooled from both sexes. Because this analysis uses pooled, de-identified plasma, it was judged not to constitute human subjects research and therefore was not subject to IRB review or approval. Rat plasma was of mixed sex. All plasma was collected with K₃EDTA and sterile filtered (0.2 µm).

The chemicals HFPO-DA, HFPO-TA, HFPO-TeA, and ¹³C₃-HFPO-DA used for ultracentrifugation assay were the same as those used for the metabolic stability and metabolic formation assays.

Fraction unbound (f_u) in plasma (f_{up}) was calculated by dividing the aqueous fraction (AF) concentration by the T300 min concentration (Equation E). Chemical stability in plasma was assessed using the T60 min and T300 min concentrations (Equation F).

$$(E) f_{up} = \frac{AF}{T300minutes}$$

(**F**) Percent Stability = $\frac{T300minutes}{T60minutes} * 100$

Supporting Text S11: In Vitro-In Vivo Extrapolation (IVIVE) and Administered Equivalent Dose (AED) Calculations

The pharmacokinetic equation used to estimate expected steady-state concentrations (C_{ss}) is based on zero order uptake of a daily dose from the gut (assuming 100% bioavailability) with both nonmetabolic renal clearance (Cl_{renal}) and hepatic clearance (Cl_{hepatic}) (Equation G) [8,9]. The chemical input rate (ko) is the product of the intake dosage and the model body weight; this represents the numerator of Equation G. The Cl_{renal} calculation is shown in the first part of the denominator of Equation G; it is product of the species-dependent glomerular filtration rate (GFR) and the unbound fraction in

blood (fub) of the parent compound. The Clhepatic calculation is shown in the second part of the denominator of Equation G; it is the product of the species dependent liver blood flow constant, the fub of the parent compound, and the experimentally derived intrinsic clearance (shown in Equation D) divided by the sum these three values. All values used in Equation G are for first order conditions of metabolism in the liver. All calculations, scalars, and species dependent values used to conduct the Css calculation to facilitate in vitro-in vivo extrapolation (IVIVE) are provided Table S19 within the Excel worksheet, the tab labelled IVIVE-Css.

(**G**)
$$C_{ss} = \frac{ko}{GFR * f_u + \frac{Q1 * f_{ub} * Cl_{int}}{Q1 + f_{ub} + Cl_{int}}}$$

Based on the principle of reverse dosimetry, the C_{ss} values derived from IVIVE will be used as conversion factors to generate AEDs according to Equation H. In this equation, the AED is linearly related to the in vitro concentration and inversely related to the C_{ss}. It is only valid for first-order metabolism that is expected at ambient exposure levels.

(**H**)
$$AED\left(\frac{mg}{\frac{kg}{day}}\right) = \frac{in \ vitro \ concentration \ (\mu M)}{C_{ss} \ (\mu M) * 1 \frac{mg}{\frac{kg}{day}}}$$

Chemical Name	CASRN	DTXSID	Vendor	Purity	Experiment
Perfluoro (2,5,8-trimethyl-3,6,9-			Synquest Laboratories	96.94%	in vivo dosing
trioxadodecanoic) acid	13252-13-6	70276659	Oakwood Products Inc.	98.97%	Internal dose and NTA
(HFPO-TeA)			Oakwood Products Inc.*	94.8%	In-vitro assays
Perfluoro (2,5-dimethyl-3,6-					
dioxanonanoic) acid	13252-14-7	00892442	Matrix Scientific*	97%	In-vitro assays
(HFPO-TA)					
Perfluoro (2-methyl-3-oxahexanoic) acid	65294 16 8	70880215	Oskwood Products Inc *	08 07%	In vitro accave
(HFPO-DA; GenX)	03294-10-0	70000215	Oakwood I foducis life.	90.97 /8	iii-vitto assays
¹³ C ₃ -HFPO-DA	N/A	N/A	Wellington Laboratories	> 98%	In-vitro assays
Perfluorohexadecanoic acid	67905 19 5	1070800	Cambridge Isotope	> 08%	Analytical chamistry
(PFHxDA)	07903-19-3	1070800	Laboratories	≥ 90 /0	Analytical chemistry
¹³ C ₄ Perfluorobutanoic acid	NI/A	NI/A	Wallington Laboratorias	> 0.00%	Analytical chamictary
(¹³ C4-PFBA)	IN/A	IN/A	Weinington Laboratories	> 90 /0	Analytical chemistry
¹³ C ₅ Perfluoropentanoic acid	NI/Δ	NI/Δ	Wellington Laboratories	> 98%	Analytical chemistry
(¹³ C ₅ -PFeBA)	11/11	11/71	Wennigton Laboratories	> 50 %	Anarytical chemistry
¹³ C ₅ Perfluorohexanoic acid	NI/Δ	NI/Δ	Wellington Laboratories	> 98%	Analytical chemistry
(¹³ C ₅ -PFHxA)	11/14	11/21	Wennigton Laboratories	> 90 %	Anarytical chemistry
¹³ C ₉ Perfluorooctanoic acid	N/A	N/A	Wellington Laboratories	> 98%	Analytical chemistry
(¹³ C ₈ -PFOA)	14/21	14/21	Weinington Euboratories	2 90 /0	Thaty tear chemistry
¹³ C9 Perfluorononanoic acid	N/A	N/A	Wellington Laboratories	> 98%	Analytical chemistry
(¹³ C9-PFNA)	14/11	14/11	Weinington Euboratories	, ,0,10	Thaty ticar chemiotry
¹³ C ₆ Perfluorodecanoic acid	N/A	N/A	Wellington Laboratories	> 98%	Analytical chemistry
(¹³ C ₆ -PFDA)	14/11	14/11			This field chemistry
¹³ C7 Perfluoroundecanoic acid	N/A	N/A	Wellington Laboratories	> 98%	Analytical chemistry
(¹³ C7-PFUnDA)	14/11	14/11			This field chemistry
¹³ C ₂ Perfluorododecanoic acid	N/A	N/A	Wellington Laboratories	> 98%	Analytical chemistry
(¹³ C ₂ -PFDoDA)	14/11	14/11			This field chemistry
¹³ C ₂ Perfluorotetradecanoic acid	N/A	N/A	Wellington Laboratories	> 98%	Analytical chemistry
(¹³ C ₂ -PFTeDA)	14/11	14/11			This field chemistry
¹³ C ₃ Perfluorobutane sulfonate	N/A	N/A	Wellington Laboratories	> 98%	Analytical chemistry
(¹³ C ₃ -PFBS)	,)
¹³ C ₃ Perfluorohexane sulfonate	N/A	N/A	Wellington Laboratories	> 98%	Analytical chemistry
(13C3-PFHxS)			0		- , ,
¹³ C ₃ Perfluorooctane sulfonate	N/A	N/A	Wellington Laboratories	> 98%	Analytical chemistry
(¹³ C ₃ -PFOS)	,)
3,3',5-Triiodothyronine (T3)	6893-02-3	8023216	Cerilliant Corporation	> 99%	Analytical chemistry
¹³ C ₆ -T3	N/A	N/A	Cerilliant Corporation	>98%	Analytical chemistry
3,3',5'-Triiodothyronine (rT3)	5817-39-0	3046908	Cerilliant Corporation	>98%	Analytical chemistry
¹³ C ₆ -rT3	N/A	N/A	Cerilliant Corporation	> 99%	Analytical chemistry
L-thyroxine (T4)	300-30-1	0023662	Cerilliant Corporation	> 98%	Analytical chemistry
¹³ C6-T4	N/A	N/A	Cerilliant Corporation	> 98%	Analytical chemistry

Table S3. Chemical identification, vendor, purity, and experiment usage for all analytes and internal standards.

*Denotes chemicals procured through US EPA contract#68HE0D18D0001 with EvoTec Inc. (Branford, CT), who provided dosing solutions solubilized in 95% ethanol.

Table S4. Mobile phase gradient for targeted analysis of thyroid hormones in plasma on a Sciex 6500+ QTRAP. Both mobile phases contained 0.1% formic acid as an additive.

Time (min)	%A (H2O)	%B (MeOH)
0.01	70	30
3.89	30	70
4.66	30	70
4.67	10	90
6.22	10	90
6.23	70	30
8.55	70	30
8.56	System Control	ler Stop

Table S5. Various instrument conditions for plasma thyroid hormone quantitation on a Sciex 6500+ QTRAP.

Sciex 6500+ Parameter	Setting	
Source	ESI	
Polarity	Positive	
Scan Type	MRM	
Source Temperature (°C)	500	
Spray Voltage (kV)	5.5	
Curtain Gas (psi)	35	
Ion Source Gas 1 (psi)	90	
Ion Source Gas 2 (psi)	80	
Collision Gas	Medium	
Detection Window (sec)	80	
Scan Time (sec)	0.33	

Table S4. Monitored transitions for analysis of thyroid hormones and ¹³C-labeled internal standards on a Sciex 6500+ QTRAP. All ions were acquired in positive ion mode.

Analyte	Precursor Ion	Fragment Ion	Declustering Potential (DP)	Collision Energy (CE)	Transition Type
Tγ	651.80	605.7	100	100.0	Quant
15	651.80	478.9	100	50.5	Qual
¹³ C-T3	657.80	605.7	100	33.0	IS
T 2	651.75	605.7	100	34.0	Quant
r13	651.75	508.1	100	35.0	Qual
¹³ C-rT3	657.80	605.7	100	33.0	IS
	777.70	731.7	100	40.0	Quant
14	777.70	605.1	100	58.3	Qual
¹³ C-T4	783.70	737.7	100	53.0	IS

Quant: Quantifier ion; Qual: Qualifier ion; IS: Internal standard ion.

Table S5. Mobile phase gradient for targeted analysis of HFPO-TeA on a Sciex X500R QTOF/MS. Both mobile phases contained ammonium formate (4 mM) as an additive.

Time (min)	%A (95:5 H2O/MeOH)	%B (95:5 MeOH/H ₂ O)
0.0	98	2
1.0	40	60
5.0	0	100
10.0	0	100
10.1	98	2
15	98	2

	MRM	Information Dependent	Information Independent
Sciex X500R Parameter	Targeted Analysis	Analysis	Analysis
		Non-Targeted	Non-Targeted
Source	ESI	ESI	ESI
Polarity	Negative	Negative	Negative
Scan Type	MRM	IDA	SWATH
Ion Source Gas 1 (psi)	30	30	30
Ion Source Gas 2 (psi)	30	35	35
Curtain Gas (psi)	30	30	30
CAD Gas	8	8	8
Source Temperature (°C)	400	400	400
Spray Voltage (V)	-4500	-3750	-3750
TOF MS Scan Range (Da)	100-1000	100-1250	100-1500
TOF MS DP (V)	-95	-50	-50
TOF MS DP Spread (V)	0	0	0
TOF MS CE (V)	-10	-5	-5
TOF MS CE Spread (V)	0	0	0
TOF MS Accumulation	0.25	0.1	0.1
TOF MSMS Scap Rango			
(Da)	N/A	50-1250	50-1250
TOF MSMS Accumulation			
Time (sec)	0.1	0.05	0.05
Monitored Transition 1			
(MT1)	$350.97 \rightarrow 184.9856$	N/A	N/A
MT1 TOF MSMS DP (V)	-25	N/A	N/A
MT1 TOF MSMS CE (V)	-45	N/A	N/A
Monitored Transition 2		· · · · ·	· · · · ·
(MT2)	$350.97 \rightarrow 118.9919$	N/A	N/A
MT2 TOF MSMS DP (V)	-25	N/A	N/A
MT2 TOF MSMS CE (V)	-35	N/A	N/A
Monitored Transition 3 (MT3)	812.95 → 768.9514	N/A	N/A
MT3 TOF MSMS DP (V)	-25	N/A	N/A
MT3 TOF MSMS CE (V)	-15	N/A	N/A
$\frac{1}{1} \frac{1}{1} \frac{1}$	N/A	-40	-40
TOF MSMS DP Spread (V)	0	0	0
$\frac{101 \text{ WBWS D1 Spiedd}(V)}{\text{TOE MSMS CE}(V)}$	N/A	-30	
TOF MSMS CE Spread (V)	N/A	-50	-50
Maximum Candidate Jons	N/A	15	N/A
Minimum Intensity	11/17	1.J	11/7
Threshold (CPS)	N/A	100	N/A
Total Scan Time (sec)	0.612	0 927	0 954
Estimated Cycles	1471	2931	2831

Table S6. Various instrument conditions for sample analysis on a Sciex X500R QTOF/MS.

Table S7. Monitored transitions for analysis of HFPO-TeA using PFHxDA as an internal standard on a Sciex X500R QTOF/MS. The ion of m/z 350.97 is the in-source fragment formed from the HFPO-TeA molecular ion of m/z 660.97. All ions were acquired in negative ion mode.

Analyte	Precursor Ion	Fragment Ion	DP	CE	Transition Type
HFPO-TeA	250.07	184.9856	-25	-45	Quant
	350.97	118.9919	-25	-35	Qual
PFHxDA	812.95	768.9514	-25	-15	IS

Quant: Quantifier ion; Qual: Qualifier ion; IS: Internal standard ion.

Table S8. Mobile phase gradient for non-targeted analysis on a Sciex X500R QTOF/MS. Ammonium formate (4 mM) was present in both mobile phases as an additive.

Time (min)	%A (95:5 H2O/MeOH)	%B (95:5 MeOH/H ₂ O)
0.0	98	2
1.0	90	10
25.0	0	100
30.0	0	100
30.1	98	2
45.0	98	2

Table S9. Mobile phase gradient for targeted analysis of HFPO-TeA on a Waters Xevo-TQS. Both mobile phases contained the additive ammonium acetate (2.5 mM).

Time (min)	%A (95:5 H ₂ O/ACN)	%B (95:5 ACN/H ₂ O)
0	95	5
2	95	5
2.45	80	20
2.6	50	50
3.5	42	58
4.25	34	66
4.4	25	75
5.6	20	80
5.9	0	100
7.64	0	100
7.7	80	20
8	80	20
9.5	95	5

Table S10. Various instrument conditions for hepatocyte clearance and protein plasma binding assays on a Waters Xevo-TQS.

Xevo TQ-S Micro Parameter	Setting
Source	UniSpray (US)
Polarity	Positive/Negative
Scan Type	MRM
Capillary Voltage (kV)	1.00
Cone Gas Flow (L/Hr)	0
Desolvation Gas Flow (L/Hr)	650
Source Temperature (°C)	110

Table S11. Monitored transitions for analysis of in vitro analytes using a Waters Xevo-TQS.

Analyte	Precursor Ion	Fragment Ion	Cone (V)	CE	Transition Type	Ion Mode
	285.08	169.02	2.00	6.0	Quant	Negative
пгго-da	285.08	185.03	2.00	12	Qual	
	404.02	118.89	42.00	40	Quant	Nanakina
HFPO-IA	494.93	184.97	42.00	8.0	Qual	Negative
	250.07	118.90	40.00	36	Quant	Nanatina
HFPO-IeA	350.97	184.92	40.00	10	Qual	Negative
¹³ C ₃ -HFPO-DA	286.97	168.96	10.00	6.0	Quant	Negative
		184.97	12.00	16	Qual	
	200.20	97.10	22.00	20	Quant	Positive
Testosterone	289.20	109.10	33.00	15	Qual	
12C T	202.02	100.02	12.00	22	Quant	Positive
¹³ C-Testosterone	292.02	111.98	42.00	24	Qual	
Phenacetin	100.10	92.89	22.00	28	Quant	Positive
	180.12	110.00	32.00	22	Qual	
Propranolol	2(0.10	55.92	22.00	30	Quant	Positive
	260.18	116.00	22.00	18	Qual	

Quant: Quantifier ion; Qual: Qualifier ion

Table S12. Individual body weights, absolute liver weights, and relative liver weights for all rats after 5 days of exposure.

			Beginning	Terminal	Body	Avg. ± St. Dev.	Liver	Relative	Average ± St. Dev.
Kat	Dose Level	Sex	Body	Body	Weight	Body Weight	Weight	Liver	Relative Liver
ID	(mg/kg/day)		Weight (g)	Weight (g)	Change (g)	Change (g)	(g)	Weight (g%)	Weight (g%)
R145	0	М	228.1	323.3	35.2	0.0	15.0154	4.644	0 0
R146	0	M	284.3	315.0	30.7		15.2084	4.828	
R147	0	М	283.2	315.4	32.2	31.3 ± 3.3	14.4240	4.573	4.577 ± 0.236
R148	0	М	286.4	313.6	27.2		13.3673	4.263	
R149	0.3	М	285.6	313.8	28.2		13.9494	4.445	
R150	0.3	М	290.6	330.7	40.1		16.3796	4.953	
R151	0.3	М	286.4	334.9	48.5	37.2 ± 9.0	15.4580	4.616	4.702 ± 0.220
R152	0.3	М	286.0	318.0	32.0		15.2495	4.795	
R153	0.9	М	274.5	320.5	46.0		16.7977	5.241	
R154	0.9	М	277.8	316.1	38.3	20 (16.8117	5.318	5 0 01 × 0 001
R155	0.9	М	286.5	323.9	37.4	39.6 ± 4.3	16.3850	5.059	5.291 ± 0.201
R156	0.9	М	298.3	335.0	36.7		18.5738	5.544	
R157	2.3	М	286.1	323.6	37.5		17.9851	5.558	
R158	2.3	М	279.6	325.4	45.8	20.0 . 4.0	19.2395	5.913	E 01 () 0 00E
R159	2.3	М	294.6	332.8	38.2	39.0 ± 4.8	20.9175	6.285	5.916 ± 0.297
R160	2.3	М	283.3	317.9	34.6		18.7875	5.910	
R161	6.3	М	281.4	308.9	27.5		19.3187	6.254	
R162	6.3	М	301.7	344.9	43.2		25.7576	7.468	(000 0 -0 -
R163	6.3	М	290.0	321.7	31.7	31.8 ± 8.1	22.4062	6.965	6.983 ± 0.527
R164	6.3	М	283.7	308.4	24.7		22.3377	7.243	
R165	17	М	286.9	250.6	-36.3		13.4969	5.386	
R166	17	М	298.7	248.0	-50.7		13.8697	5.593	
R167	17	М	286.5	226.8	-59.7	-51.5 ± 10.9	12.4995	5.511	5.600 ± 0.223
R168	17	М	281.1	221.9	-59.2		13.1122	5.909	
R181	0	F	231.4	239.4	8.0		10.6198	4.436	
R182	0	F	226.1	232.1	6.0		9.6526	4.159	
R183	0	F	220.1	225.6	5.5	3.7 ± 5.7	8.9720	3.977	4.190 ± 0.189
R184	0	F	225.1	220.5	-4.6		9.2394	4.190	
R185	0.3	F	219.6	230.9	11.3		10.2929	4.458	
R186	0.3	F	217.4	225.9	8.5	· - · · ·	10.0087	4.431	
R187	0.3	F	228.7	229.7	1.0	6.5 ± 4.4	10.5040	4.573	4.488 ± 0.062
R188	0.3	F	221.8	226.9	5.1		10.1866	4.489	
R189	0.9	F	229.1	237.7	8.6		12.6621	5.327	
R190	0.9	F	208.7	227.1	18.4	10.0 0	11.3910	5.016	E 004 - 0 004
R191	0.9	F	219.8	230.2	10.4	12.2 ± 4.3	11.9531	5.192	5.086 ± 0.224
R192	0.9	F	228.8	240.1	11.3		11.5466	4.809	
R193	2.3	F	221.3	229.6	8.3		12.3341	5.372	
R194	2.3	F	224.4	245.9	21.5	12.2 2	12.8755	5.236	5 2 04 × 0.0 5 2
R195	2.3	F	214.7	225.6	10.9	12.3 ± 6.2	12.0585	5.345	5.296 ± 0.073
R196	2.3	F	229.5	238.0	8.5		12.4504	5.231	
R197	6.3	F	225.6	213.8	-11.8		10.2774	4.807	
R198	6.3	F	210.3	189.0	-21.3	17.0 + 14.2	9.4969	5.025	E 220 + 0 (24
R199	6.3	F	210.1	207.9	-2.2	-17.8 ± 14.3	12.9764	6.242	5.329 ± 0.634
R200	6.3	F	215.5	179.8	-35.7		9.4275	5.243	
R201	17	F	224.5	161.8	-62.7		9.7114	6.002	
R202	17	F	227.0	174.9	-52.1	FF 0 : F 7	9.8972	5.659	
R203	17	F	214.4	164.8	-49.6	-55.2 ± 5.7	9.1738	5.567	5.796 ± 0.216
R204	17	F	222.9	166.6	-56.3		9.9260	5.958	

Table S13. Individual concentrations for plasma T3, rT3, and T4 in all rats after 5 days of exposure to HFPO-TeA. < LOQ = sample concentration was below the LOQ (rT3 =0.005 ng/mL). N/A = Calculation not completed due the majority of samples being below the LOQ.

Rat ID	Dose Level (mg/kg/day)	Sex	T3 Conc. (ng/mL)	Avg. ± St. Dev. T3 Conc. (ng/mL)	rT3 Conc. (ng/mL)	Avg. ± St. Dev. rT3 Conc. (ng/mL)	T4 Conc. (ng/mL)	Avg. ± St. Dev. T4 Conc. (ng/mL)
R145	0	М	0.644	č	<loo< td=""><td>ž</td><td>35.3</td><td>×</td></loo<>	ž	35.3	×
R146	0	М	0.736		0.0510		41.6	
R147	0	М	0.775	0.737 ± 0.066	<loo< td=""><td>$0.0510 \pm N/A$</td><td>38.5</td><td>39.8 ± 3.6</td></loo<>	$0.0510 \pm N/A$	38.5	39.8 ± 3.6
R148	0	М	0.793		<loo< td=""><td></td><td>43.6</td><td></td></loo<>		43.6	
R149	0.3	М	0.920		0.127		50.1	
R150	0.3	М	0.695		<loo< td=""><td></td><td>36.3</td><td></td></loo<>		36.3	
R151	0.3	М	0.891	0.811 ± 0.111	<loo< td=""><td>$0.127 \pm N/A$</td><td>24.7</td><td>37.6 ± 10.4</td></loo<>	$0.127 \pm N/A$	24.7	37.6 ± 10.4
R152	0.3	М	0.739		<loo< td=""><td></td><td>39.4</td><td></td></loo<>		39.4	
R153	0.9	М	0.829		<loo< td=""><td></td><td>37.5</td><td></td></loo<>		37.5	
R154	0.9	М	0.783		< LOO		37.0	
R155	0.9	М	0.687	0.723 ± 0.105	< LOO	N/A	46.3	38.8 ± 5.2
R156	0.9	М	0.594		< LOO		34.4	
R157	2.3	М	0.633		0.188		36.0	
R158	2.3	М	0.764		< LOO		37.6	
R159	2.3	М	0.556	0.678 ± 0.101	< LOO	$0.188 \pm N/A$	48.1	35.8 ± 10.9
R160	2.3	М	0.759		< LOO		21.5	
R161	6.3	М	0.680		0.061		30.9	
R162	6.3	М	0.627		0.081		26.7	
R163	6.3	М	0.667	0.630 ± 0.060	0.112	0.0847 ± 0.0257	31.3	32.9 ± 6.9
R164	6.3	М	0.547		< LOO		42.7	
R165	17	М	0.334		< LOO		8.34	
R166	17	М	0.518		0.0630		14.0	
R167	17	М	0.444	0.423 ± 0.078	< LOQ	0.0630 ± N/A	9.60	9.82 ± 2.94
R168	17	М	0.394		< LOO		7.34	
R181	0	F	0.717		< LOO		35.9	
R182	0	F	0.689		< LOO		26.0	
R183	0	F	0.973	0.870 ± 0.200	< LOO	$0.153 \pm N/A$	28.5	29.7 ± 4.3
R184	0	F	1.10		0.153		28.2	
R185	0.3	F	1.00		< LOQ		30.9	
R186	0.3	F	0.775		< LOQ		36.4	
R187	0.3	F	0.784	0.844 ± 0.106	< LOQ	$0.143 \pm N/A$	29.1	31.3 ± 3.5
R188	0.3	F	0.817		0.143		28.9	
R189	0.9	F	0.974		< LOQ		30.2	
R190	0.9	F	0.862	0 500 . 0 1 (5	< LOQ	27/4	29.2	260.42
R191	0.9	F	0.782	0.799 ± 0.167	< LOQ	N/A	20.9	26.8 ± 4.2
R192	0.9	F	0.577		< LOQ		26.9	
R193	2.3	F	0.783		0.0960		35.6	
R194	2.3	F	0.750	0 701 + 0 004	< LOQ	0.105 . 0.010	38.4	24.0 . 5.0
R195	2.3	F	0.782	0.781 ± 0.024	0.113	0.105 ± 0.012	26.5	34.9 ± 5.8
R196	2.3	F	0.809		< LOQ		38.9	
R197	6.3	F	0.729		< LOQ		26.4	
R198	6.3	F	0.399	0 5 (2) 0 1 (2	< LOQ	0.00(0 + N/A	16.8	10.0 . 71
R199	6.3	F	0.672	0.563 ± 0.162	0.0860	$0.0860 \pm N/A$	24.9	19.9 ± 7.1
R200	6.3	F	0.451		< LOQ		11.3	
R201	17	F	0.806		0.0480		21.9	
R202	17	F	0.548	0 595 + 0 160	< LOQ	0.0510 / 0.0040	16.2	150 . 50
R203	17	F	0.425	0.385 ± 0.160	< LOQ	0.0510 ± 0.0042	7.77	13.9 ± 3.9
R204	17	F	0.562		0.0540		17.9	

Table S14. Individual HFPO-TeA plasma and plasma extract concentrations for all rats after 2 hours of exposure. < LOQ = sample concentration was below the LOQ (20 ng/mL or 0.0302 μ M) N/A = not applicable due to data being below the LOQ.

Rat ID	Dose Level (mg/kg/day)	Sex	Plasma Extract Conc. (ng/mL)	Dilution Factor	Plasma Conc. (µg/mL)	Plasma Conc. (µM)	Avg. ± St. Dev. Plasma Conc. (µM)
R145	0	М	ND	25	< LOQ	< LOQ	
R146	0	М	ND	25	< LOQ	< LOQ	
R147	0	М	ND	25	< LOQ	< LOQ	N/A
R148	0	М	ND	25	< LOO	< LOO	
R149	0.3	М	4.66	25	0.117	0.176	
R150	0.3	М	3.76	25	0.094	0.142	
R151	0.3	М	3.42	25	0.086	0.129	0.150 ± 0.020
R152	0.3	М	4.05	25	0.101	0.153	
R153	0.9	М	8.62	50	0.431	0.651	
R154	0.9	М	5.81	50	0.291	0.439	
R155	0.9	М	8.99	50	0.450	0.679	0.573 ± 0.113
R156	0.9	М	6.90	50	0.345	0.521	
R157	2.3	М	19.1	400	7.65	11.6	
R158	2.3	М	28.6	400	11.4	17.3	
R159	2.3	М	20.1	400	8.06	12.2	13.1 ± 2.8
R160	2.3	M	18.6	400	7.45	11.3	
R161	6.3	M	59.3	400	23.7	35.8	
R162	6.3	M	61.0	400	24.4	36.8	
R163	6.3	M	42.7	400	171	25.8	34.0 ± 5.5
R164	6.3	M	62.4	400	24.9	37.7	
R165	17	M	152	400	60.6	91.6	
R166	17	M	139	400	55.8	84.3	
R167	17	M	183	400	73.0	110	126 ± 62
R168	17	M	361	400	114.0	218	
R181	0	F	ND	25	<1.00	<1.00	
R182	0	F	ND	25	<1.00	<100	
R183	0	F	ND	25	<1.00	<1.00	N/A
R184	0	F	ND	25	<1.00	<1.00	
R185	0.3	F	3.28	25	0.0820	0.124	
R186	0.3	F	4.94	25	0.124	0.187	
R187	0.3	F	3.11	25	0.0778	0.117	0.137 ± 0.033
R188	0.3	F	3.14	25	0.0785	0.119	
R189	0.9	F	5.23	100	0.523	0.790	
R190	0.9	F	6.18	50	0.309	0.467	
R191	0.9	F	8.36	50	0.418	0.631	0.620 ± 0.133
R192	0.9	F	7.84	50	0.392	0.592	
R193	2.3	F	17.2	400	6.87	10.4	
R194	2.3	F	19.4	400	7.78	11.7	
R195	2.3	F	26.9	400	10.8	16.3	15.1 ± 5.3
R196	2.3	F	36.5	400	14.6	22.1	
R197	6.3	F	49.8	400	19.5	29.5	
R198	6.3	F	110	400	43.9	66.4	
R199	6.3	F	103	400	41.1	62.0	53.2 ± 16.5
R200	6.3	F	90.9	400	36.3	54.9	
R201	17	F	494	400	197	298	
R202	17	F	460	400	184	278	
R203	17	F	235	400	94.0	142	224 ± 76
R204	17	F	295	400	118	179	

Table S15. Individual HFPO-TeA plasma and plasma extract concentrations for all rats after 5 days of exposure. < LOQ = sample concentration was below the LOQ (20 ng/mL or 0.0302 μ M) N/A = not applicable due to data being below the LOQ.

Rat ID	Dose Level (mg/kg/day)	Sex	Plasma Extract Conc. (ng/mL)	Dilution Factor	Plasma Conc. (µg/mL)	Plasma Conc. (µM)	Avg. ± St. Dev. Plasma Conc. (µM)
R145	0	М	ND	25	<loo< td=""><td>< LOO</td><td></td></loo<>	< LOO	
R146	0	М	ND	25	<loo< td=""><td>< LOO</td><td></td></loo<>	< LOO	
R147	0	М	ND	25	<loo< td=""><td>< LOO</td><td>N/A</td></loo<>	< LOO	N/A
R148	0	М	ND	25	<1.00	<1.00	
R149	0.3	M	22.3	25	0.558	0.843	
R150	0.3	M	23.4	25	0.586	0.885	
R151	0.3	M	22.7	25	0.567	0.856	0.827 ± 0.071
R152	0.3	M	19.2	25	0.479	0 723	
R153	0.9	M	2.34	800	1.87	2.83	
R154	0.9	M	1.81	800	1.45	2 19	
R155	0.9	M	2 70	800	2.16	3.26	2.73 ± 0.45
R156	0.9	M	2 19	800	1.75	2.65	
R157	23	M	7.10	800	5.68	8.58	
R158	2.3	M	4 19	800	3.35	5.06	
R150	2.3	M	4.19	800	3 50	5 29	6.64± 1.73
R160	2.3	M	6.30	800	5.04	7.61	
R161	6.3	M	19.3	800	15.5	23.3	
R162	6.3	M	18.9	800	15.5	23.5	
R162	6.3	M	10.7	800	57	22.9	24.5 ± 2.3
R163	6.3	M	23.1	800	18.5	28.0	
R164	17	M	42.2	1600	10.5 65.4	28.0	
R165	17	M	40.0	1600	109	165	
R167	17	M	90.6	1600	109	227	168 ± 53
D169	17	M	90.0 74.6	1600	110	170	
D191	17	E	74.0 ND	25	<100	1/9	
D192	0	Г	ND	25	< LOQ	<100	
D192	0	Г	ND	25	< LOQ	<100	N/A
D194	0	Г	ND	25	< LOQ	<100	
D195	0	Г	22.0	25	< LOQ 0.550	< LOQ	
R103	0.3	Г	22.0	25	0.330	0.031	
R100 D107	0.3	Г	19.7	25	0.492	0.743	0.854 ± 0.086
K107	0.3	Г	24.9	25	0.622	0.939	
R100	0.5	Г	23.9	23	0.396	0.901	
R109 R100	0.9	Г	2.34	800	1.07	2.05	
R190 D101	0.9	Г	2.44	800	1.95	2.93	3.62 ± 0.91
R191 D102	0.9	Г	3.95 2.25	800	3.16	4.//	
R192	0.9	Г	5.25	800	2.60	3.93	
R193	2.3	г г	7.13	800	5.70	8.62	
R194	2.3	г г	5.40	800	4.32	6.53	8.92 ± 2.36
R195	2.3	F	6.92	800	5.54	8.36	
R196	2.3	F	10.1	800	8.06	12.2	
R197	6.3	F	42.4	800	33.9	51.2	
R198	6.3	F	39.5	800	31.6	47.8	52.6 ± 14.3
K199	6.3	F	32.0	800	25.6	38.7	
R200	6.3	F	60.1	800	48.0	72.6	
R201	17	F	116	1600	200	302	
R202	17	F	94.6	1600	160	241	278 ± 28
R203	17	F	102	1600	181	273	
R204	17	F	123	1600	196	296	

Table S16. Individual HFPO-TeA liver (wet weight; ww) and liver extract concentrations for all rats after 5 days of exposure. < LOQ = sample concentration was below the LOQ (0.99 ng/mg ww or 1.58 μ M) N/A = not applicable due to data being below the LOQ.

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Rat ID	Dose Level (mg/kg/day)	Sex	Liver Extract Conc. (ng/mL)	Dilution Factor	Liver Conc. (ng/mg)	Liver Conc. (µM)	Avg. ± St. Dev. Liver Conc. (μM)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	R145	0	М	ND	1	< LOO	<loo< td=""><td></td></loo<>	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	R146	0	М	ND	1	<loo< td=""><td><loo< td=""><td></td></loo<></td></loo<>	<loo< td=""><td></td></loo<>	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	R147	0	М	ND	1	< LOO	<loo< td=""><td>N/A</td></loo<>	N/A
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	R148	0	М	ND	1	<loo< td=""><td><loo< td=""><td></td></loo<></td></loo<>	<loo< td=""><td></td></loo<>	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	R149	0.3	М	35.5	1	1.85	2950	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	R150	0.3	М	138	1	6.84	10,900	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	R151	0.3	М	71.6	1	3.28	5240	6070 ± 3410
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	R152	0.3	М	57.0	1	3.23	5160	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	R153	0.9	М	60.4	2	3.10	4950	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	R154	0.9	М	109	2	5.32	8500	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	R155	0.9	М	125	2	6.52	10.400	9060 ± 3170
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	R156	0.9	M	159	2	7.76	12.400	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	R157	2.3	M	82.5	2	4.09	6530	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	R158	2.3	M	98.5	2	4 65	7430	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	R159	2.3	M	70.3	2	3.64	5810	$10,300 \pm 7530$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	R160	2.3	M	282	5	13.5	21.600	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	R161	6.3	M	1130	20	61.6	98 400	
R1620.3II11012016.516.517082,700 $\pm 10,500$ R1636.3M1050148.176,800R1646.3M1050148.577,400R16517M234030109174,000R16617M13603080.8129,000R16717M22003132211,000R16817M40303205327,000R1810FND1 <loq< td=""><loq< td="">R1820FND1<loq< td=""><loq< td="">R1830FND1<loq< td=""><loq< td="">R1840FND1<loq< td=""><loq< td="">R1850.3F83.214.096530R1860.3F13016.6710,700R1870.3F69.713.135060R1880.3F33.312.063290R1890.9F17119.2414,800R1900.9F12326.6510,600R1910.9F12116.8510,900R1920.9F223112.419,800R1932.3F427521.534,300R1942.3F81.623.655830R1952.3F</loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<>	R162	6.3	M	1100	20	48.9	78 100	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	R163	6.3	M	937	1	48.1	76,800	$82,700 \pm 10,500$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	R164	6.3	M	1050	1	48.5	77 400	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	R165	17	M	2340	30	109	174.000	
R160IIIA00506001000110,000 $210,000 \pm 84,900$ R167I7M40303122211,000 $210,000 \pm 84,900$ R168I7M40303205 $327,000$ R1810FND1 $N/AR1820FND1N/AR1830FND1N/AR1840FND1N/AR1850.3F83.214.0965306380 \pm 3140R1860.3F69.713.1350606380 \pm 3140R1880.3F69.719.2414,80014,000 \pm 4280R1890.9F17119.2414,80014,000 \pm 4280R1900.9F12116.8510,90014,000 \pm 4280R1910.9F12116.8510,90016,500 \pm 12,600R1920.9F223112.419,80016,500 \pm 12,600R1932.3F81.623.65583016,500 \pm 12,600R1942.3F81.623.65583016,500 \pm 12,600R1952.3F7382042.267,40086,700 \pm 31,700R1986.3F7201692R16617M13603080.8129,000$	R166	17	M	1360	30	80.8	129,000	
R165II	R167	17	M	2200	3	132	211 000	$210,000 \pm 84,900$
R180IIR00IL00GL00GL00R1810FND1 $<$ LOQ $<$ LOQN/AR1820FND1 $<$ LOQ $<$ LOQN/AR1830FND1 $<$ LOQ $<$ LOQN/AR1840FND1 $<$ LOQ $<$ LOQN/AR1850.3F83.214.096530 $_{6380 \pm 3140}$ R1860.3F13016.6710,700 $_{6380 \pm 3140}$ R1870.3F69.713.135060 $_{6380 \pm 3140}$ R1880.3F33.312.063290 $_{7400 \pm 4280}$ R1990.9F17119.2414,800 $_{7400 \pm 4280}$ R1910.9F12116.6510,600 $_{14,000 \pm 4280}$ R1920.9F223112.419,800 $_{7150 \pm 12,600}$ R1942.3F81.623.655830 $_{16,500 \pm 12,600}$ R1942.3F11156.2810,000 $_{7160 \pm 12,600}$ R1962.3F7382042.267,400R1976.3F7382042.267,400R1986.3F1200169.2110,000 $_{86,700 \pm 31,700}$ R1996.3F6952032.852,400 $_{700 \pm 31,700}$ </td <td>R168</td> <td>17</td> <td>M</td> <td>4030</td> <td>3</td> <td>205</td> <td>327.000</td> <td></td>	R168	17	M	4030	3	205	327.000	
R1810FND1< LOQ< LOQR1820FND1< LOQ	R181	0	F	ND	1	<100	<100	
R1020FND1CLQQCLOQN/AR1830FND1 $N/AR1840FND1R1850.3F83.214.096530_{A}R1860.3F13016.6710,700_{A}R1870.3F69.713.135060_{A}R1880.3F33.312.063290_{A}R1900.9F17119.2414,800_{A}R1910.9F12326.6510,600_{A}R1920.9F223112.419,800_{A}R1932.3F427521.534,300_{A}R1942.3F81.623.655830_{A}R1952.3F20259.9315,900_{A}R1962.3F11156.2810,000_{A}R1976.3F7382042.267,400_{A}R1986.3F1200169.2110,000_{B}R1996.3F6952032.852,400_{A}$	R187	0	F	ND	1	<100	<100	
R1000FRD1CLOQCLOQR1840FND1 $<$ LOQ $<$ LOQR1850.3F83.214.096530R1860.3F13016.6710,700R1870.3F69.713.135060R1880.3F33.312.063290R1890.9F17119.2414,800R1900.9F12326.6510,600R1910.9F12116.8510,900R1920.9F223112.419,800R1932.3F427521.534,300R1942.3F81.623.65583016,500 \pm 12,600R1952.3F11156.2810,00016,500 \pm 12,600R1962.3F11156.2810,00016,500 \pm 12,600R1976.3F7382042.267,400R1986.3F1200169.2110,00086,700 \pm 31,700R1996.3F6952032.852,40086,700 \pm 31,700	R182	0	F	ND	1	<100	<100	N/A
R16461R165161606160R1850.3F83.214.096530R1860.3F13016.6710,700R1870.3F69.713.135060R1880.3F33.312.063290R1890.9F17119.2414,800R1900.9F12326.6510,600R1910.9F12116.8510,900R1920.9F223112.419,800R1932.3F427521.534,300R1942.3F81.623.65583016,500 \pm 12,600R1952.3F11156.2810,000 \pm 12,600R1962.3F7382042.267,400R1976.3F7382032.8 $52,400$ $86,700 \pm$ 31,700R1996.3F6952032.8 $52,400$ $86,700 \pm$ 31,700	R184	0	F	ND	1	<100	<100	
R1800.3F13014.056000R1860.3F13016.6710,700 6380 ± 3140 R1870.3F69.713.135060 6380 ± 3140 R1880.3F33.312.063290 $14,000 \pm 4280$ R1900.9F17119.2414,800R1910.9F12326.6510,600 $14,000 \pm 4280$ R1920.9F223112.419,800R1932.3F427521.534,300R1942.3F81.623.655830 $16,500 \pm 12,600$ R1952.3F11156.2810,000 $14,000 \pm 12,600$ R1962.3F7382042.267,400R1976.3F7382042.267,400R1986.3F1200169.2110,000 $86,700 \pm 31,700$ R1996.3F6952032.852,400 $86,700 \pm 31,700$	R185	03	F	83.2	1	4.09	6530	
R1800.3F69.713.0350.0 6380 ± 3140 R1870.3F69.713.135060 6380 ± 3140 R1880.3F33.312.063290R1890.9F17119.2414,800R1900.9F12326.6510,600R1910.9F12116.8510,900R1920.9F223112.419,800R1932.3F427521.534,300R1942.3F81.623.65583016,500 \pm 12,600R1952.3F20259.9315,90016,500 \pm 12,600R1962.3F7382042.267,400R1976.3F7382042.267,400R1986.3F6952032.852,40086,700 \pm 31,700	R186	0.3	F	130	1	6.67	10 700	
R167 0.3 1 $0.7.7$ 1 0.15 3000 R188 0.3 F 33.3 1 2.06 3290 R189 0.9 F 171 1 9.24 $14,800$ R190 0.9 F 123 2 6.65 $10,600$ R191 0.9 F 121 1 6.85 $10,900$ R192 0.9 F 223 1 12.4 $19,800$ R193 2.3 F 427 5 21.5 $34,300$ R194 2.3 F 81.6 2 3.65 5830 R195 2.3 F 202 5 9.93 $15,900$ R196 2.3 F 111 5 6.28 $10,000$ R197 6.3 F 738 20 42.2 $67,400$ R198 6.3 F 1200 1 69.2 $110,000$ $86,700 \pm 31,700$ R199 6.3 F 695 20 32.8 $52,400$ $86,700 \pm 31,700$	R187	0.3	F	69.7	1	3.13	5060	6380 ± 3140
R180 0.5 1 30.5 1 2.60 52.50 R189 0.9 F 171 1 9.24 $14,800$ R190 0.9 F 123 2 6.65 $10,600$ R191 0.9 F 121 1 6.85 $10,900$ R192 0.9 F 223 1 12.4 $19,800$ R193 2.3 F 427 5 21.5 $34,300$ R194 2.3 F 81.6 2 3.65 5830 R195 2.3 F 202 5 9.93 $15,900$ R196 2.3 F 111 5 6.28 $10,000$ R197 6.3 F 738 20 42.2 $67,400$ R198 6.3 F 1200 1 69.2 $110,000$ $86,700 \pm 31,700$ R199 6.3 F 695 20 32.8 $52,400$ $86,700 \pm 31,700$	R188	0.3	F	33.3	1	2.06	3290	
R109 0.9 F 171 1 724 $14,000$ R190 0.9 F 123 2 6.65 $10,600$ R191 0.9 F 121 1 6.85 $10,900$ R192 0.9 F 223 1 12.4 $19,800$ R193 2.3 F 427 5 21.5 $34,300$ R194 2.3 F 81.6 2 3.65 5830 R195 2.3 F 202 5 9.93 $15,900$ R196 2.3 F 111 5 6.28 $10,000$ R197 6.3 F 738 20 42.2 $67,400$ R198 6.3 F 1200 1 69.2 $110,000$ R199 6.3 F 695 20 32.8 $52,400$	R180	0.9	F	171	1	9.24	14 800	
R190 6.5 1 125 2 6.65 $10,000$ $14,000 \pm 4280$ R191 0.9 F 121 1 6.85 $10,900$ $14,000 \pm 4280$ R192 0.9 F 223 1 12.4 $19,800$ R193 2.3 F 427 5 21.5 $34,300$ R194 2.3 F 81.6 2 3.65 5830 R195 2.3 F 202 5 9.93 $15,900$ R196 2.3 F 111 5 6.28 $10,000$ R197 6.3 F 738 20 42.2 $67,400$ R198 6.3 F 1200 1 69.2 $110,000$ R199 6.3 F 695 20 32.8 $52,400$	R100	0.9	F	171	2	6.65	10,600	
R191 0.5 1 121 1 0.55 $10,00$ R192 0.9 F 223 1 12.4 $19,800$ R193 2.3 F 427 5 21.5 $34,300$ R194 2.3 F 81.6 2 3.65 5830 R195 2.3 F 202 5 9.93 $15,900$ R196 2.3 F 111 5 6.28 $10,000$ R197 6.3 F 738 20 42.2 $67,400$ R198 6.3 F 1200 1 69.2 $110,000$ R199 6.3 F 695 20 32.8 $52,400$	R190	0.9	F	120	1	6.85	10,000	$14,000 \pm 4280$
R192 0.9 1 1225 1 12.4 $17,000$ R193 2.3 F 427 5 21.5 $34,300$ R194 2.3 F 81.6 2 3.65 5830 R195 2.3 F 202 5 9.93 $15,900$ R196 2.3 F 111 5 6.28 $10,000$ R197 6.3 F 738 20 42.2 $67,400$ R198 6.3 F 1200 1 69.2 $110,000$ R199 6.3 F 695 20 32.8 $52,400$	R191	0.9	F	223	1	12.4	19,500	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	R192	23	F	427	5	21.5	34 300	
R194 2.3 F 202 5 9.93 15,900 16,500 ± 12,600 R195 2.3 F 111 5 6.28 10,000 R197 6.3 F 738 20 42.2 67,400 R198 6.3 F 1200 1 69.2 110,000 R199 6.3 F 695 20 32.8 52,400	R194	2.3	F	81.6	2	3.65	5830	
R195 2.3 F 111 5 6.28 10,000 R196 2.3 F 111 5 6.28 10,000 R197 6.3 F 738 20 42.2 67,400 R198 6.3 F 1200 1 69.2 110,000 R199 6.3 F 695 20 32.8 52,400	R194	2.3	F	202	5	9.93	15 900	$16,500 \pm 12,600$
R190 2.5 1 111 5 6.25 10,000 R197 6.3 F 738 20 42.2 67,400 R198 6.3 F 1200 1 69.2 110,000 R199 6.3 F 695 20 32.8 52,400	R195	2.3	F	111	5	6.28	10,000	
R197 6.3 F 1200 1 69.2 110,000 86,700 ± 31,700 R199 6.3 F 695 20 32.8 52,400 86,700 ± 31,700	R190 R197	6.3	F	738	20	42.2	67.400	
R199 6.3 F 695 20 32.8 $52,400$ $86,700 \pm 31,700$	R197	6.3	F	1200	1	42.2 69.2	110,000	
KI// 0.5 I 0/5 20 02.0 02.0	R190	6.3	F	695	20	32.8	52 400	$86,700 \pm 31,700$
R200 63 F 1376 20 73.1 117.000	R200	63	F	1376	20	73.1	117 000	
R200 0.0 I 1070 20 70.1 117,000 R201 17 E 3600 3 174 278,000	R200	17	L.	3600	20	174	278.000	
R_{201} 17 F 2780 3 1/4 270,000	R201	17	r. F	2780	3	160	255,000	
R202 17 F 2700 5 100 255,000 ±39,300	R202	17	r F	2/00	30	100	192.000	$250,000 \pm 39,300$
R204 17 F 3790 3 172 275.000	R204	17	F	3790	3	172	275.000	

References

- 1. Probst, R.J.; Lim, J.M.; Bird, D.N.; Pole, G.L.; Sato, A.K.; Claybaugh, J.R. Gender Differences in the Blood Volume of Conscious Sprague-Dawley Rats. *Journal of the American Association for Laboratory Animal Science* **2006**, *45*, 49-52.
- 2. Trudnowski, R.J.; Rodolfo, R.C. Specific Gravity of Blood and Plasma at 4 and 37 °C. *Clinical Chemistry* **1974**, *20*, 615-616, doi:10.1093/clinchem/20.5.615.
- 3. Kim, S.-J.; Heo, S.-H.; Lee, D.-S.; Hwang, I.G.; Lee, Y.-B.; Cho, H.-Y. Gender differences in pharmacokinetics and tissue distribution of 3 perfluoroalkyl and polyfluoroalkyl substances in rats. *Food and Chemical Toxicology* **2019**, *97*, 243-255, doi:10.1016/j.fct.2016.09.017.
- 4. Yi, S.; Yang, D.; Zhu, L.; Mabury, S.A. Significant Reductive Transformation of 6:2 Chlorinated Polyfluorooctane Ether Sulfonate to Form Hydrogen-Substituted Polyfluorooctane Ether Sulfonate and Their Toxicokinetics in Male Sprague-Dawley Rats. *Environmental Science & Technology* **2022**, *56*, 6123-6132, doi:10.1021/acs.est.1c00616.
- 5. Jia, Y.; Zhu, Y.; Xu, D.; Feng, X.; Yu, X.; Shan, G.; Zhu, L. Insights into the Competitive Mechanisms of Per- and Polyfluoroalkyl Substances Partition in Liver and Blood. *Environmental Science & Technology* **2022**, *56*, 6192-6200, doi:10.1021/acs.est.1c08493.
- 6. Lambert, J.-P.; Ivosev, G.; Couzens, A.L.; Larsen, B.; Taipale, M.; Lin, Z.-Y.; Zhong, Q.; Lindquist, S.; Vidal, M.; Aebersold, R.; et al. Mapping differential interactomes by affinity purification coupled with data independent mass spectrometry acquisition. *Nature Methods* **2013**, *10*, 1239-1245, doi:10.1038/nmeth.2702.
- Yao, J.; Sheng, N.; Guo, Y.; Yeung, L.W.Y.; Dai, J.; Pan, Y. Nontargeted Identification and Temporal Trends of Per- and Polyfluoroalkyl Substances in a Fluorochemical Industrial Zone and Adjacent Taihu Lake. *Environmental Science & Technology* 2022, *56*, 7986-7996, doi:10.1021/acs.est.2c00891.
- 8. Wetmore, B.A. Quantitative *in vitro--*to-*in vivo* extrapolation in a high-throughput environment. *Toxicology* **2015**, *332*, 94-101, doi:10.1016/j.tox.2014.05.012.
- 9. Wilkinson, G.R.; Shand, D.G. A physiological approach to hepatic drug clearance. *Clinical Pharmacology & Therapeutics* **1975**, *18*, 377-390, doi:10.1002/cpt1975184377.