
Supporting Information Results 1: SeqAPASS Evaluation Results for Nicotinic Acetylcholine Receptor a1 Subunit

Sequence Alignment to Predict Across Species Susceptibility (SeqAPASS)

Level 1					
Level 1 Query Protein Information	Report Settings				
SeqAPASS ID: 2323	Report Type: Primary				
Query Species: Apis mellifera	E-value: 0.01				
Query Protein: nicotinic acetylcholine receptor alphal subunit	Sorted By Taxonomic Group: CLASS				
Query Accession: NP_001091690.1	Common Domains: 1				
Ortholog Count: 110	Species Read-Across: Y				
Protein and Taxonomy Data: 06/08/2020	Cut-off %: 33.12				
BLAST Version: 2.10.0	Show Only Eukaryotes: Y				
Software Version: 4.1					

Level 2					
Level 2 Query Protein Information	Report Settings				
SeqAPASS ID: 2323	Report Type: Primary				
Query Species: Apis mellifera	E-value: 10.0				
Query Domain: (21) pfam02931, Neur_chan_LBD, Neurotransmitter-gated ion-channel ligand binding domain	Sorted By Taxonomic Group: CLASS				
Query Accession: NP_001091690.1	Species Read-Across: Y				
Ortholog Count: 110	Cut-off %: 22.72				
Protein and Taxonomy Data: 06/08/2020	Show Only Eukaryotes: Y				
BLAST Version: 2.10.0					
Software Version: 4.1					

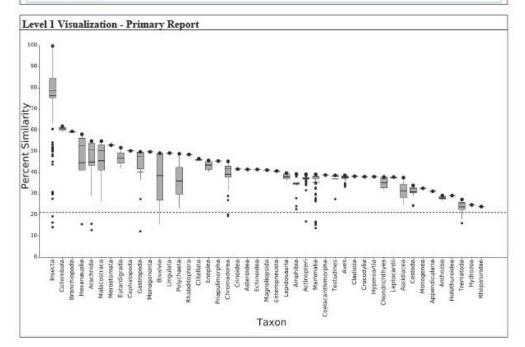
Level 2 Visualization - Primary Report

Level 3			
Selected Amino Acids	Level 3 Template Protein Information		
7R, 78E,140K,170W,220Y,221S,227Y	SeqAPASS ID: 2323		
	Template Species: Drosophila melanogaster		
	Template Protein: [NP_524481.2] nicotinic		
	acetylcholine receptor alpha1, isoform A		
	Protein and Taxonomy Data: 06/08/2020		
	BLAST Version: 2.10.0		
	Software Version: 4.1		

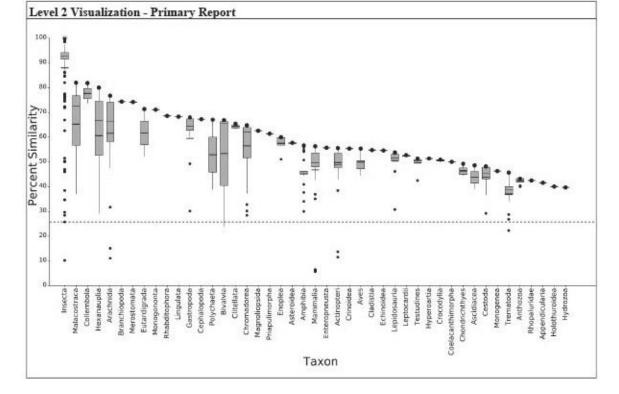
Level 3 Visualization

Total Match Partial Match Susceptible Yes Not a Match Sosceptible No								
Scientific Name	Similar Susceptibility	Amino Acid 1	Amino Acid 2	Amino Acid 3	Amino Acid 4	Amino Acid 5	Amino Acid 6	Amino Acid
Drosophila melanogaster	Y	STR	THE	1406	170W	2307	3215	22.7X
Apia mellifera		59R	746	THE	166W	216V	2171	323.Y
Apis cerana	S Y .	-19R	TOOLE	162K	192W	1423	2431	249X
Apis florea	Y	198	100E	162K	100W	HZY	2431	3494
Habropoda labonosa	Y.	H3R.	74E	HOK.	166W	216Y	217]	223Y
Osmia bicornis bicornis	¥	ISIR	1005	1628	1921	2429	2431	249¥
Osmia lignaria		San	100E	142K	192W	712Y	2431	2497
Bombus bifarius	×.	1. Part	1 10/2	162K	192W	2424	2431	1403
Bombus vancouverensis nearcticus	Y	79R	100E	162K	192W	142Y	2431	249Y
Bombus vosnesenskii	Y	THE	1005	14HK	1921	2425	2431	349¥
Bombus terrestris	Y	THR	1005	162K	197W	2423	2431	3497
Megachile rotundata	¥.	79R	100E	Hi2K	WORL	242Y	.2431	2497
Dufourea novaeangliae		79R	100E	162K	-192W	242Y	2431	249¥
Bombus impatiens	Y	198	100E	ISIK	152W	142Y	2431	3493
Nomia melanderi	Y	HOR	1006	162K	HPEW	342Y	2431	249F
Eufriesca mexicana	Y	79R	1008	162K	192W	342 Y	2431	349Y
Megalopta genalis	N	1	SE	THE	100W	1501	1511	157F
Apis dorsata	¥	37K.	THE	1406	170W	2201	2217	2278
Ceratina calcarata	Y Y	61K	87E	1446	2741	2347	225T	-231Y

	Fin	al Decision S	ummary Rej	port	
Species	Protein	tein Level 1 Susceptible (21) pfam0293 (Y/N) Neur_chan_LB Neurotransmitti gated ion-chann ligand binding domain		Level 3 Template	Level 3 Amino Acids (Y/N)
Apis mellifera	nicotinic acetylcholine receptor alphal subunit	Y	Y	Drosophila melanogaster	Y
Apis cerana	acetylcholine receptor subunit alpha-like 1 isoform X2	Ŷ	Y	Drosophila melanogaster	Y
Apis florea	acetylcholine receptor subunit alpha-like 1 isoform X2	Y	Ŷ	Drosophila melanogaster	Y
Habropoda laboriosa	PREDICTED: acetylcholine receptor subunit alpha-like 1 isoform X3	Y	Y	Drosophila melanogaster	Y
Osmia bicornis bicornis	acetylcholine receptor subunit alpha-like 1 isoform X1	Y	Y	Drosophila melanogaster	Y
Osmia lignaria	acetylcholine receptor subunit alpha-like 1 isoform X1	Y	Y	Drosophila melanogaster	Y
Bombus bifarius	acetylcholine receptor subunit alpha-like l	Y	Y	Drosophila melanogaster	Y
Bombus vancouverensis nearcticus	acetylcholine receptor subunit alpha-like 1	Y	Y	Drosophila melanogaster	Y
Bombus vosnesenskii	acetylcholine receptor subunit alpha-like 1	Y	Y	Drosophila melanogaster	Y
Bombus terrestris	acetylcholine receptor subunit alpha-like 1	Y	Y	Drosophila melanogaster	Y
Megachile rotundata	PREDICTED: acetylcholine receptor subunit alpha-like l	Y	Y	Drosophila melanogaster	Y
Dufourea novaeangliae	PREDICTED: acetylcholine receptor subunit alpha-like 1 isoform	Y	Y	Drosophila melanogaster	Y


Bombus impatiens	acetylcholine receptor subunit alpha-like 1 isoform X2	Y	Ŷ	Drosophila melanogaster	Y
Nomia melanderi	acetylcholine receptor subunit alpha-like l	Y	Y	Drosophila melanogaster	Y
Eufriesea mexicana	PREDICTED: acetylcholine receptor subunit alpha-like l	Y	Y	Drosophila melanogaster	Y
Megalopta genalis	acetylcholine receptor subunit alpha-like l	Y	Y	Drosophila melanogaster	N
Apis dorsata	acetylcholine receptor subunit alpha-like isoform X7	Y	Y	Drosophila melanogaster	Y
Ceratina calcarata	acetylcholine receptor subunit alpha-like isoform X1	Y	Y	Drosophila melanogaster	Y

Supporting Information Results 2: SeqAPASS Evaluation Results for Nicotinic Acetylcholine Receptor α2 Subunit


Sequence Alignment to Predict Across Species Susceptibility (SeqAPASS)

Decision Summary Report

Level 1 Level 1 Query Protein Information Report Settings SeqAPASS ID: 2323 Report Type: Primary E-value: 0.01 Query Species: Apis mellifera Query Protein: nicotinic acetylcholine receptor alpha2 subunit Sorted By Taxonomic Group: CLASS Query Accession: AJE70260.1 Common Domains: 1 Species Read-Across: Y Ortholog Count: 228 Protein and Taxonomy Data: 06/08/2020 Cut-off %: 21.23 BLAST Version: 2.10.0 Show Only Eukaryotes: Y Software Version: 5.0

Level 2					
Level 2 Query Protein Information	Report Settings				
SeqAPASS ID: 2323	Report Type: Primary				
Query Species: Apis mellifera	E-value: 10.0				
Query Domain: (21) pfam02931, Neur_chan_LBD, Neurotransmitter-gated ion-channel ligand binding domain	Sorted By Taxonomic Group: CLASS				
Query Accession: AJE70260.1	Species Read-Across: Y				
Ortholog Count: 227	Cut-off %: 25.58				
Protein and Taxonomy Data: 06/08/2020	Show Only Eukaryotes: Y				
BLAST Version: 2.10.0					
Software Version: 5.0					

Level 3				
Selected Amino Acids	Level 3 Template Protein Information			
90W,241Y,242P,248Y	SeqAPASS ID: 2323			
	Template Species: Drosophila melanogaster			
	Template Protein: [NP_524482.1] nicotinic			
	acetylcholine receptor alpha2, isoform A			
	Protein and Taxonomy Data: 06/08/2020			
	BLAST Version: 2.10.0			
	Software Version: 5.0			

Total Match					
Partial Match Susceptible Yes Not a Match Susceptible No					
Scientific Name	Similar Susceptibility	Amino Acid 1	Amino Acid 2	Amino Acid 3	Amino Acid 4
Drosophila melanogaster	Y Y	190W	241¥	242P	24SY
Apis mellifera	Y	166W	215Y	216P	222Y
Apis florea	Y	165W	2153	2169	222Y
Apis cerana	Y	166W	215¥	216P	222¥
Apis dorsata	Y	166W	215¥	216P	2221
Habropoda laboriosa	¥ V	166W	215Y	216P	222Y
Bombus vosnesenskii	¥	165W	215Y	216P	222 Y
Bombus vancouverensis nearcticus	Y	166W	215Y	216P	222Y
Bombus bifarius	Y	165W	2157	216P	22.2 Y
Bombus impatiens	¥	166W	215Y	216P	21222
Bombus terrestris	Y	166W	2153	2169	222Y

Y

Y

Ŷ

Y

¥

Ŷ

Y

¥

Y

218P

234¥

Level 3 Visualization

Osmia bicornis bicornis Nomia melanderi

Eufriesea mexicana

Dufourea novaeangliae

Osmia lignaria

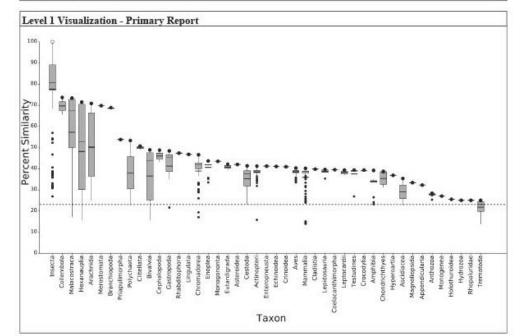
Megachile rotundata

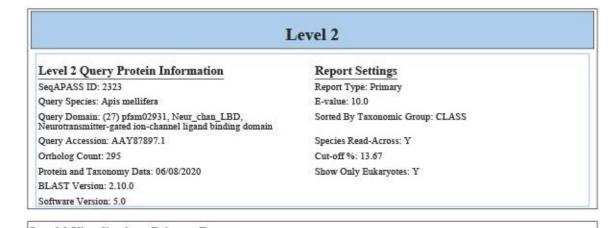
Megalopta genalis

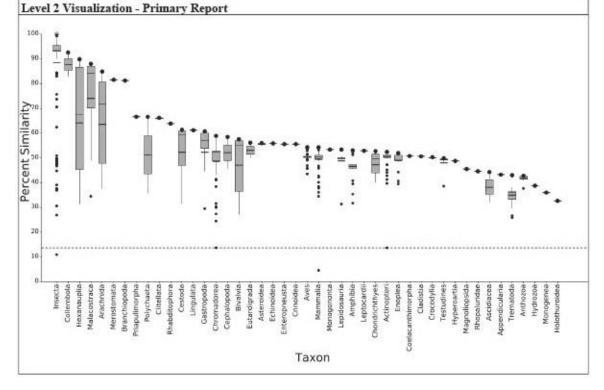
Ceratina calcarata

Melipona quadrifasciata

264W


	1	al Decision S	ummary Kej	port	
Species	Protein	Level 1 Susceptible (Y/N)	(21) pfam02931, Neur_chan_LBD, Neurotransmitter- gated ion-channel ligand binding domain	Level 3 Template	Level 3 Amin Acids (Y/N)
Apis mellifera	nicotinic acetylcholine receptor alpha2 subunit	Y	Y	Drosophila melanogaster	Y
Apis florea	acetylcholine receptor subunit alpha-L·l	Y	Y	Drosophila melanogaster	Y
Apis cerana	acetylcholine receptor subunit alpha-L1 isoform X1	Y	Y	Drosophila melanogaster	Y
Apis dorsata	acetylcholine receptor subunit alpha-L1 isoform X2	Ŷ	Y	Drosophila melanogaster	Y
Habropoda laboriosa	PREDICTED: acetylcholine receptor subunit alpha-L1	Ŷ	Ŷ	Drosophila melanogaster	Y
Bombus vosnesenskii	acetylcholine receptor subunit alpha-L1 isoform X2	Y	Y	Drosophila melanogaster	Y
Bombus vancouverensis nearcticus	acetylcholine receptor subunit alpha-L1 isoform X2	Y	Y	Drosophila melanogaster	Y
Bombus bifarius	acetylcholine receptor subunit alpha-L1 isoform X2	Y	Y	Drosophila melanogaster	Y
Bombus impatiens	acetylcholine receptor subunit alpha-L1 isoform X2	Y	Y	Drosophila melanogaster	Y
Bombus terrestris	acetylcholine receptor subunit alpha-L1 isoform X2	Y	Y	Drosophila melanogaster	Ŷ
Osmia bicornis bicornis	acetylcholine receptor subunit alpha-L1	Y	Y	Drosophila melanogaster	Y
Nomia melanderi	acetylcholine receptor subunit alpha-L1	Y	Y	Drosophila melanogaster	Y
Eufriesea mexicana	PREDICTED: acetylcholine receptor subunit alpha-L1	Y	Y	Drosophila melanogaster	Y
Dufourea novaeangliae	PREDICTED: acetylcholine receptor subunit	Y	Y	Drosophila melanogaster	Y


	alpha-L1 isoform X3				
Osmia lignaria	acetylcholine receptor subunit alpha-L1 isoform X2	Y	Y	Drosophila melanogaster	Y
Megachile rotundata	PREDICTED: acetylcholine receptor subunit alpha-L1	Y	Y	Drosophila melanogaster	Y
Megalopta genalis	acetylcholine receptor subunit alpha-L1 isoform X1	Y	Y	Drosophila melanogaster	Y
Ceratina calcarata	LOW QUALITY PROTEIN: acetylcholine receptor subunit alpha-L1-like	Y	Y	Drosophila melanogaster	Y
Melipona quadrifasciata	Acetylcholine receptor subunit alpha-L1	Y	Y	Drosophila melanogaster	Y

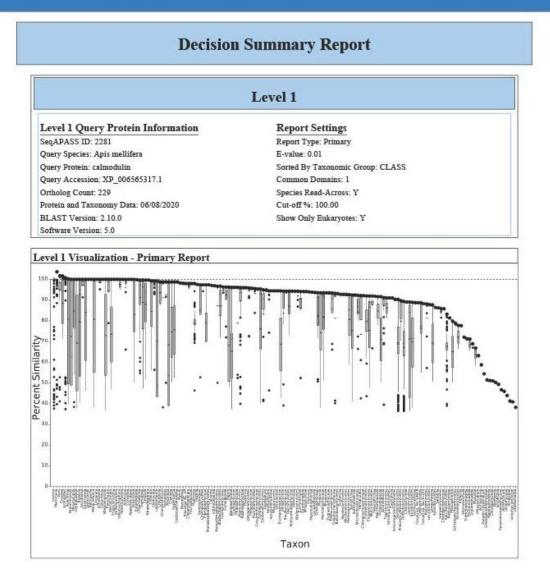

Supporting Information Results 3: SeqAPASS Evaluation Results for Nicotinic Acetylcholine Receptor β1 Subunit

Sequence Alignment to Predict Across Species Susceptibility (SeqAPASS)

Level 1					
Level 1 Query Protein Information	Report Settings				
SeqAPASS ID: 2323	Report Type: Primary				
Query Species: Apis mellifera	E-value: 0.01				
Query Protein: nicotinic acetylcholine receptor betal subunit	Sorted By Taxonomic Group: CLASS				
Query Accession: AAY87897.1	Common Domains: I				
Ortholog Count: 296	Species Read-Across: Y				
Protein and Taxonomy Data: 06/08/2020	Cut-off %: 23.01				
BLAST Version: 2.10.0	Show Only Eukaryotes: Y				
Software Version: 5.0					

	Level 3
Selected Amino Acids	Level 3 Template Protein Information
81R,141L,143V	SeqAPASS ID: 2323
	Template Species: Drosophila melanogaster
	Template Protein: [NP_523927.2] nicotinic
	acetylcholine receptor beta1, isoform A
	Protein and Taxonomy Data: 06/08/2020
	BLAST Version: 2.10.0
	Software Version: 5.0

Level 3 Visualization

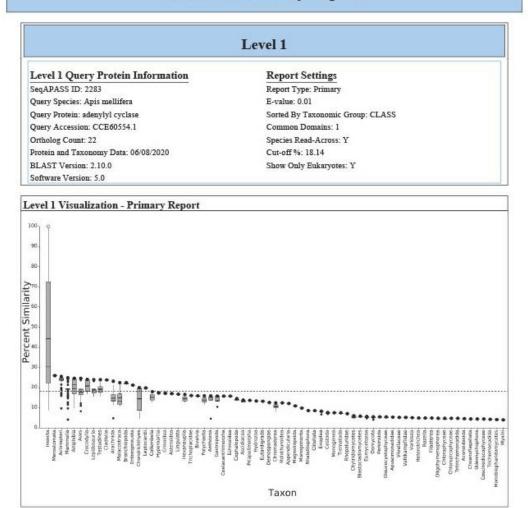

Scientific Name	Similar Susceptibility	Amino Acid 1	Amino Acid 2	Amino Acid 3
Drosophila melanogaster	Y	81R	141L	143V
Apis mellifera	Y	SOR.	140L	142V
Apis cerana cerana	Y	79R	139L	141V
Apis dorsata	Y	115R	175L	177V
Apis florea	Y	114R	174L	176V
Apis cerana	Y	115R	175L	177V
Bombus impatiens	Y	79R	139L	141V
Bombus bifarius	Y	79R	139L	141V
Bombus vosnesenskii	Y	79R	139L	141W
Bombus vancouverensis nearcticus	Y	79R	139L	141V
Bombus terrestris	Y	79R	139L	1417
Nomia melanderi	Y	79R.	139L	14IV
Megalopta genalis	Y	79 R	139L	141V
Ceratina calcarata	Y	79R.	139L	-14IV
Dufourea novaeangliae	Y	79R	139L	141V
Habropoda laboriosa	Y	79R	139L	:141V
Megachile rotundata	Y	79R.	139L	141V
Osmia lignaria	Y	79R.	139L	141V
Osmia bicornis bicornis	Y	79R	139L	141V
Eufriesea mexicana	Y	91R.	151L	153V

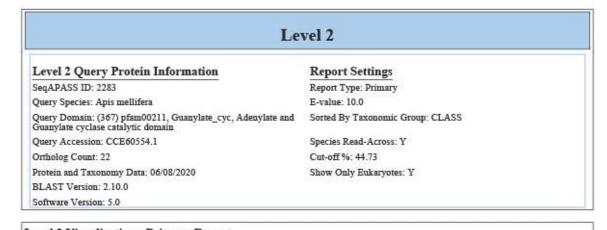

				1	
Species	Profein	Level 1 Susceptible (Y/N)	(27) pfam02931, Neur_chan_LBD, Neurotransmitter- gated ion-channel ligand binding domain	Level 3 Template	Level 3 Amino Acids (Y/N)
Apis mellifera	nicotinic acetylcholine receptor betal subunit	Y	Y	Drosophila melanogaster	Y
Apis cerana cerana	nicotinic acetylcholine receptor beta 1	Y	Y	Drosophila melanogaster	Ŷ
Apis dorsata	acetylcholine receptor subunit beta- like 1	Y	Y	Drosophila melanogaster	Y
Apis florea	acetylcholine receptor subunit beta- like 1	Y	Y	Drosophila melanogaster	Ŷ
Apis cerana	acetylcholine receptor subunit beta- like 1	Ŷ	Y	Drosophila melanogaster	Ŷ
Bombus impatiens	acetylcholine receptor subunit beta- like 1	Y	Y	Drosophila melanogaster	Y
Bombus bifarius	acetylcholine receptor subunit beta- like 1	Ŷ	Ŷ	Drosophila melanogaster	Y
Bombus vosnesenskii	acetylcholine receptor subunit beta- like 1	Y	Y	Drosophila melanogaster	Ŷ
Bombus vancouverensis nearcticus	acetylcholine receptor subunit beta- like 1	Ŷ	Y	Drosophila melanogaster	Y
Bombus terrestris	acetylcholine receptor subunit beta- like 1	Y	Ŷ	Drosophila melanogaster	Ŷ
Nomia melanderi	acetylcholine receptor subunit beta- like 1	Y	Y	Drosophila melanogaster	Y
Megalopta genalis	acetylcholine receptor subunit beta- like 1	Y	Ŷ	Drosophila melanogaster	Ŷ
Ceratina calcarata	acetylcholine receptor subunit beta- like 1	Y	Y	Drosophila melanogaster	Y
Dufourea novaeangliae	PREDICTED: acetylcholine receptor subunit beta- like 1	Y	Y	Drosophila melanogaster	Y
Habropoda laboriosa	PREDICTED:	Y	Y	Drosophila	Y

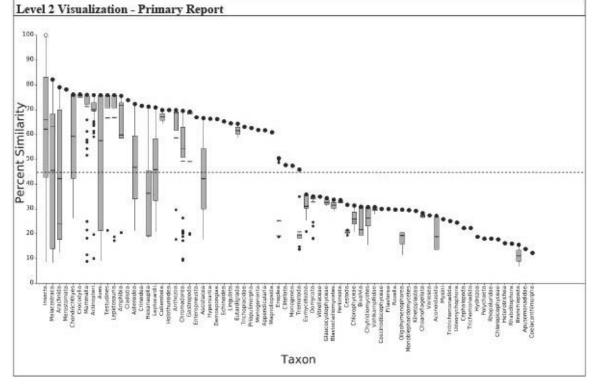
	acetylcholine receptor subunit beta- like 1			melanogaster	
Megachile rotundata	PREDICTED: acetylcholine receptor subunit beta- like 1	Y	Y	Drosophila melanogaster	Y
Osmia lignaria	acetylcholine receptor subunit beta- like 1	Y	Y	Drosophila melanogaster	Y
Osmia bicornis bicornis	acetylcholine receptor subunit beta- like 1	Ŷ	Y	Drosophila melanogaster	Y
Eufriesea mexicana	PREDICTED: acetylcholine receptor subunit beta- like l	Y	Y	Drosophila melanogaster	Y

Supporting Information Results 4: SeqAPASS Evaluation Results for Calmodulin

Sequence Alignment to Predict Across Species Susceptibility (SeqAPASS)


	Level 3
Selected Amino Acids	Level 3 Template Protein Information
21D, 23D, 25D, 27T, 32E	SeqAPASS ID: 2281
	Template Species: Rattus norvegicus
	Template Protein: [P0DP29.1] RecName:
	Full=Calmodulin-1
	Protein and Taxonomy Data: 06/08/2020
	BLAST Version: 2.10.0
	Software Version: 5.0


Level 3 Visualization Total Match Partial Match 🎆 Susceptible Yes Not a Match 📕 Staceptible No Similar Susceptibility Amino Acid Amino Acid Amino Acid Amino Acid 4 Amino Acid 5 Scientific Name Rattus norvegicus Apis mellifera Apis dorsata Bombus terrestris Bombos vancouverensis nearcticus Nomia melanderi Bombus vosnesenskii Dufourea novaeangliae Apis cerana Bombus bifarius Bombus impatiens Apis florea Osmia bicornis bicomis Habropoda laboriosa Osnia lignaria Megalopta genalis Megachile rotundata Eufriesen mexicana Ceratina calcarata Apis cerana cerana


	Fin	al Decision S	ummary Rep	port	
Species	Protein	Level 1 Susceptible (Y/N)	(12) cd00051, EFh, EF-hand, calcium binding motif; A diverse superfamily of calcium sensors and calcium signal modulators; most examples in this alignment model have 2 active canonical EF hands	Level 3 Template	Level 3 Amino Acids (Y/N)
Apis mellifera	calmodulin	Y	Y	Rattus norvegicus	Y
Apis dorsata	calmodulin	Y	Y	Rattus norvegicus	Y
Bombus terrestris	calmodulin	Y	Y	Rattus norvegicus	Y
Bombus vancouverensis nearcticus	calmodulin	Y	Y	Rattus norvegicus	Y
Nomia melanderi	calmodulin	Y	Y	Rattus norvegicus	Y
Bombus vosnesenskii	calmodulin	Y	Y	Rattus norvegicus	Y
Dufourea novaeangliae	PREDICTED: calmodulin	Y	Y	Rattus norvegicus	Y
Apis cerana	calmodulin	Y	Y	Rattus norvegicus	Y
Ceratina calcarata	calmodulin	Y	Y	Rattus norvegicus	Y
Bombus bifarius	calmodulin	Y	Y	Rattus norvegicus	Y
Bombus impatiens	calmodulin	Y	Y	Rattus norvegicus	Y
Apis florea	calmodulin	Y	Y	Rattus norvegicus	Y
Osmia bicornis bicornis	calmodulin isoform X2	Y	Y	Rattus norvegicus	Y
Habropoda laboriosa	PREDICTED: calmodulin	Y	Y	Rattus norvegicus	Y
Osmia lignaria	calmodulin	Y	Y	Rattus norvegicus	Y
Megalopta genalis	calmodulin	Y	Y	Rattus norvegicus	Y
Megachile rotundata	PREDICTED: calmodulin	Y	Y	Rattus norvegicus	Y
Eufriesea mexicana	PREDICTED: calmodulin	Y	Y	Rattus norvegicus	Y
Apis cerana cerana	Calmodulin	Y	Y	Rattus norvegicus	Y

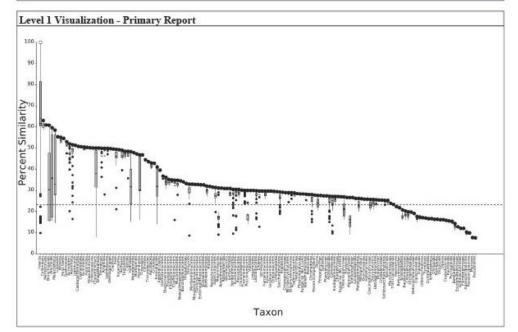
Supporting Information Results 5: SeqAPASS Evaluation Results for Adenylyl Cyclase

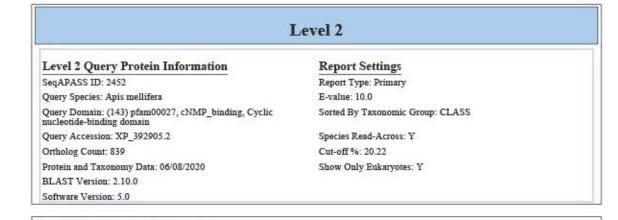
Sequence Alignment to Predict Across Species Susceptibility (SeqAPASS)

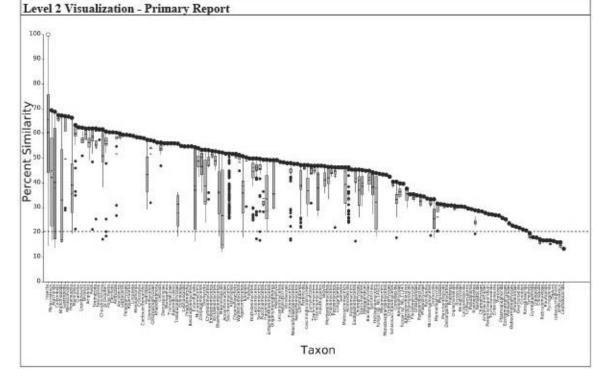
Level 3				
Selected Amino Acids	Level 3 Template Protein Information			
381D, 425D,1117K,1193D	SeqAPASS ID: 2283			
	Template Species: Apis mellifera			
	Template Protein: [CCE60554.1] adenylyl cyclase			
	Protein and Taxonomy Data: 06/08/2020			
	BLAST Version: 2.10.0			
	Software Version: 5.0			

Level 3 Visualization	
-----------------------	--

Total Match Partial Match Susceptible Yes Not a Match Susceptible No					
Scientific Name	Similar Susceptibility	Amino Acid 1	Amino Acid 2	Amino Acid 3	Amino Acid 4
Apis mellifera	Y	381D	415D	1117K	1193D
Apis cerana	Y	389D	493D	1125K	1201D
Apis cerana cerana	Y	ISUD	424D	1116K	119210
Apis dorsata	¥	389D	433D	4125K	1201D
Apis florea	Y	JE9ED	433D	1125K	1201D
Bombus vosnesenskii	Y	389D	433D	-1128K	1204D
Bombus bifarius	¥	LESOED	433D	1122K	12040
Bombus impatiens	Y	389D	433D	1128K	1204D
Bombus vancouverensis nearcticus	Y	389D	43310	1128K	12040
Eufriesea mexicana	Y	389D	433D	1128K	1204D
Bombus terrestris	Y	389D	433D	1128K	1204D
Habropoda laboriosa	Y	403D	-447D	1139K	1215D
Megachile rotundata	Ŷ	389D	493D	1120K	1196D
Osmia lignaria	Y	382D	426D	1113K	1189D
Osmia bicornis bicornis	Y	390D	434D	1121K	1197D
Ceratina calcarata	¥	391D	435D	1122K	119ED
Nomia melanderi	Y	389D	493D	1122K	1198D
Dufourea novaeangliae	Y.	38910	433D	1145K	12210
Megalopta genalis	Y	389D	433D	1121K	1197D
Melipona quadrifasciata	Y	1900	434D	1034K	1110D


	Fina	al Decision S	ummary Rej	port	
Species	Protein	Level 1 Susceptible (Y/N)	(367) pfam00211, Guanylate_cyc, Adenylate and Guanylate cyclase catalytic domain	Level 3 Template	Level 3 Amino Acids (Y/N)
Apis mellifera	adenylyl cyclase	Y	Y	Apis mellifera	Y
Apis cerana	adenylyl cyclase 78C isoform X1	Y	Y	Apis mellifera	Y
Apis dorsata	adenylyl cyclase 78C-like isoform X1	Y	Y	Apis mellifera	Y
Apis florea	adenylyl cyclase 78C isoform X1	Y	Y	Apis mellifera	Y
Bombus vosnesenskii	adenylyl cyclase 78C-like isoform X5	Y	Y	Apis mellifera	Y
Bombus impatiens	adenylyl cyclase 78C isoform X5	Y	Y	Apis mellifera	Y
Bombus bifarius	adenylyl cyclase 78C-like isoform X5	Y	¥	Apis mellifera	Y
Bombus vancouverensis nearcticus	adenylyl cyclase 78C-like isoform X5	Ŷ	Ŷ	Apis mellifera	Y
Eufriesea mexicana	PREDICTED: adenylate cyclase type 8-like isoform X4	Y	Y	Apis mellifera	Y
Bombus terrestris	adenylate cyclase type 8 isoform X2	Ŷ	Y	Apis mellifera	Y
Habropoda laboriosa	Adenylate cyclase type 8	Y	Y	Apis mellifera	Y
Megachile rotundata	PREDICTED: adenylate cyclase type 8 isoform X2	Ŷ	Ŷ	Apis mellifera	Y
Osmia lignaria	adenylyl cyclase 78C-like isoform X4	Y	Y	Apis mellifera	Y
Osmia bicornis bicornis	adenylyl cyclase 78C-like isoform X1	Y	Y	Apis mellifera	Y
Ceratina calcarata	adenylate cyclase type 8 isoform X6	Y	Y	Apis mellifera	Y
Nomia melanderi	adenylyl cyclase 78C-like isoform X1	Y	Y	Apis mellifera	Y
Dufourea novaeangliae	PREDICTED: LOW QUALITY PROTEIN: adenylate cyclase type 8-like	Y	Ŷ	Apis mellifera	Y
Megalopta genalis	adenylyl cyclase 78C isoform X1	Y	Y	Apis mellifera	Y
Melipona quadrifasciata	Adenylate cyclase type 8	Y	Y	Apis mellifera	Y


Supporting Information Results 6: SeqAPASS Evaluation Results for Protein Kinase A

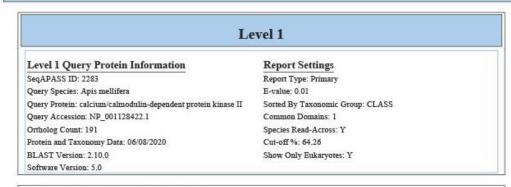

Sequence Alignment to Predict Across Species Susceptibility (SeqAPASS)

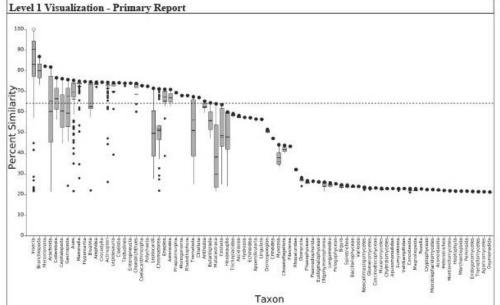
Decision Summary Report

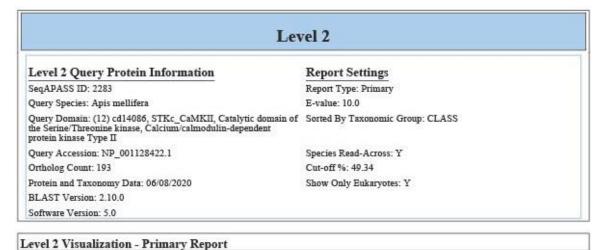
Level 1 Level 1 Query Protein Information **Report Settings** SeqAPASS ID: 2452 Report Type: Primary Query Species: Apis mellifera E-value: 0.01 Query Protein: cAMP-dependent protein kinase type II regulatory subunit isoform X1 Sorted By Taxonomic Group: CLASS Query Accession: XP_392905.2 Common Domains: 1 Ortholog Count: 837 Species Read-Across: Y Protein and Taxonomy Data: 06/08/2020 Cut-off %: 23.14 BLAST Version: 2.10.0 Show Only Eukaryotes: Y Software Version: 5.0

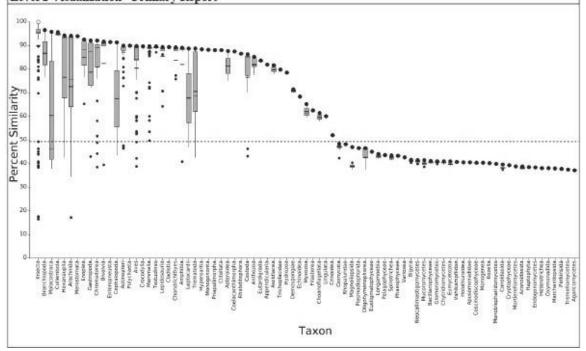
Lev	vel 3
Selected Amino Acids	Level 3 Template Protein Information
194G,195E,197A,204R,205A,317G,318E,320A,327 R,328A	SeqAPASS ID: 2452
	Template Species: Apis mellifera
	Template Protein: [CAG27571.1] cAMP-dependen protein kinase type II regulatory chain
	Protein and Taxonomy Data: 06/08/2020
	BLAST Version: 2.10.0
	Software Version: 5.0

Apir and Libra carlos Apir and Libra Apir comm Apir comm Apir Some Apir Some Apir Some Balandas Enhibita compania Enhibita compania Enhibita compania				** ** ** ** **			Arta A Arta A Arte A Arte A			178 () 418 () 178 ()	0 1044 0 1044 0 1014
April 01100 April 01100 10100 April 01100 April 50100 Fall-basis antonian Bashash tenerana Bashash tenerana Bashash tenerana			「日本」		N N N N			10		AUR 12	
Apis remet intent. Apis denem Apis Sono Estimate sonorma Bandar remetan Bandar remetan				24 35 34 34 34			Alter Alter Alter	100		- 174 ()	C. 2008
Apis dorato Apis Sono Reflecte services Enclose receives Resolute receives Resolute instance				- 314 - 314 - 314 - 314		1 N	1174	100		170 1	
Agui Sont Eicliniai anniana Bhailean marcean Bhailean Indena	Y I		44	34				1 1 1			
Enforced annual and a second an	X III	-	48	N.N.	100						1
Rendera interna	V C	-		10 m ()				- III - 1	- 44	and the second second	
Renders Indexes	V.					10 204	1 ALC 1	and the second	A LOOM AN	100	()
	-		100	and the second		Constant of	/ Hits	(11 m - 1)	- 1346 - Y	- 1111 - 201	
Readers (Incasion)		-				C 2004	C. ALM. 1		Aras 3		
	1	THE O	1	and the	- 100	201	2 III - 1	a anna a da	10m (1	1	
Brislag Teasenskii	1	2001	C CARD U	104 1		() and	17 THE 3	1100	the little	100	
Banka yanan waaa anation	T		in the second	- 414	- 10 M	1 20g	(III)	1 1 2 3	12.4 ()	-	1
Migathér ettaciati	T		101	- 10 K	100	C and	11700	1111		ALC: NO.	
Onesse francesso has seen	- T.				244	Terrar Barris					
Cases Aguera	1	-	-		200	and the second s	C attac	a chinese and	104	100	- 111
Contair officies	7. 10	Page 1	1993		244	a materia	1 N M 3		1700	ALC: NO.	
Habogada labarataa	1	AND CO.	ALC: NOT	1 mil 1		and of the	C Har 1	C (MIRE)	1 Mar 3	100	-
Rosse enlanders					- 200	and the second second	1 11 - 1		- 12W - 11	1100	S 240
Definition out manyhate	Tr.		114			11 in	1 1100 - 1	1	3 114 3	100	6 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -
Distance generation of the second	1	000	(100) 6	- IU - E	Contra Co	1014	(i	(100 - C	1 8 8 8 Y	1110	10 B.M.
Abgelapte presies						Contraction of the local division of the loc	V ALL AND A	-	·	THE	


	гша	al Decision S	unimary rec	port	
Species	Protein	Level 1 Susceptible (Y/N)	(143) pfam00027, cNMP_binding, Cyclic nucleotide- binding domain	Level 3 Template	Level 3 Amino Acids (Y/N)
Apis mellifera	cAMP-dependent protein kinase type II regulatory subunit isoform X1	Y	Y	Apis mellifera	Y
Apis mellifera carnica	cAMP-dependent protein kinase type II regulatory chain	Ŷ	Ŷ	Apis mellifera	Y
Apis cerana	cAMP-dependent protein kinase type II regulatory subunit isoform X1	Y	Y	Apis mellifera	Y
Apis cerana cerana	cAMP-dependent protein kinase type II regulatory subunit	Ŷ	Y	Apis mellifera	Y
Apis dorsata	cAMP-dependent protein kinase type II regulatory subunit isoform X1	Y	Y	Apis mellifera	Y
Apis florea	cAMP-dependent protein kinase type II regulatory subunit isoform X1	Y	Y	Apis mellifera	Y
Eufriesea mexicana	PREDICTED: cAMP-dependent protein kinase type II regulatory subunit isoform X1	Ŷ	Y	Apis mellifera	Y
Bombus terrestris	cAMP-dependent protein kinase type II regulatory subunit isoform X1	Ŷ	Y	Apis mellifera	Y
Bombus bifarius	cAMP-dependent protein kinase type II regulatory subunit isoform X1	Y	Y	Apis mellifera	Y
Bombus impatiens	cAMP-dependent protein kinase type II regulatory subunit isoform X1	Y	Y	Apis mellifera	Y
Bombus vosnesenskii	cAMP-dependent protein kinase type II regulatory subunit isoform X1	Y	Y	Apis mellifera	Y
Bombus vancouverensis nearcticus	cAMP-dependent protein kinase type II regulatory subunit isoform X1	Ŷ	Y	Apis mellifera	Y
Megachile rotundata	PREDICTED:	Y	Y	Apis mellifera	Y


	cAMP-dependent protein kinase type II regulatory subunit isoform X1				
Osmia bicomis bicomis	cAMP-dependent protein kinase type II regulatory subunit isoform X1	Y	Y	Apis mellifera	Ŷ
Osmia lignaria	cAMP-dependent protein kinase type II regulatory subunit isoform X1	Y	Y	Apis mellifera	Y
Ceratina calcarata	cAMP-dependent protein kinase type II regulatory subunit isoform X1	Y	Ŷ	Apis mellifera	Y
Habropoda laboriosa	PREDICTED: cAMP-dependent protein kinase type II regulatory subunit isoform X1	Y	Ŷ	Apis mellifera	Y
Nomia melanderi	cAMP-dependent protein kinase type II regulatory subunit, partial	Y	Y	Apis mellifera	Y
Dufourea novaeangliae	PREDICTED: LOW QUALITY PROTEIN: cAMP- dependent protein kinase type II regulatory subunit	Y	Ŷ	Apis mellifera	Y
Melipona quadrifasciata	cAMP-dependent protein kinase type II regulatory subunit	Y	Y	Apis mellifera	Ŷ
Megalopta genalis	cAMP-dependent protein kinase type II regulatory subunit isoform X1	Y	Y	Apis mellifera	Y


Supporting Information Results 7: SeqAPASS Evaluation Results for Calcium-Calmodulin-

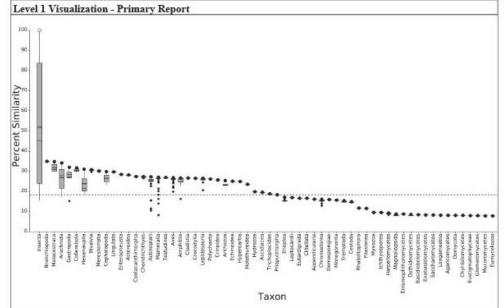

Dependent Protein Kinase II

Sequence Alignment to Predict Across Species Susceptibility (SeqAPASS)

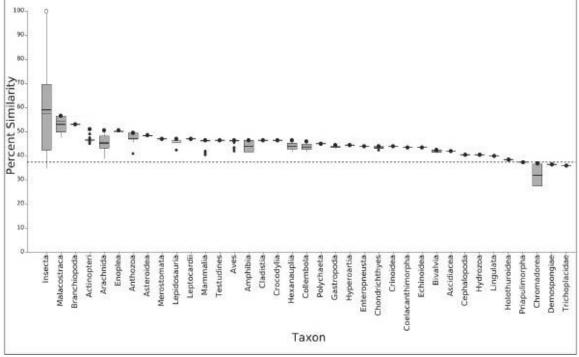
Level 3		
Selected Amino Acids	Level 3 Template Protein Information	
43K,254T,287T,306T,307T,315S	SeqAPASS ID: 2283	
	Template Species: Apis mellifera	
	Template Protein: [NP_001128422.1] calcium/calmodulin-dependent protein kinase II	
	Protein and Taxonomy Data: 06/08/2020	
	BLAST Version: 2.10.0	
	Software Version: 5.0	

Level 3 Visualization

Scientific Name	Similar Susceptibility	Amino Acid 1	Amino Acid 2	Amino Acid 3	Amino Acid 4	Amino Acid 5	Amino Acid 6
Apis mellifera	Y.	43K	254T	2871	HOT	30.77	3158
Apis dorsata	Y	455	2547	2671	JUGT	SOTT	3155
Apis florea	Ŷ	43K	194T	2071	1061	SOTT	3135
Osmia lignaria	Ť	435	254T	187 T	306T	3077	1155
Eufriesea mexicana	-¥.	43K	214T	2STT	306T	307T	3155
Megachile rotundata	Y	43E	.154T	2871	3061	3071	3158
Bombus vancouverensis nearcticus	Y	-4565	2547	2871	3067	307T	3158
Bombus bifarius	r	43H	1547	267T	1005	307T	1156
Bombus impatiens	- ¥.	43K	BAT	287T	306T	307T	1155
Bombas vosnesenskii	Ť	1356	254T	387T	3061	3077	FISS
Bombus terrestris	Y	43K.	234T	2817	1061	3077	3125
Megalopta genalis	Ŷ	43K	154T	2871	3063	3072	3155
Nomia melanderi	Y	43K.	264T	2871	3065	307T	1158
Dufourea novaeangliae	Ÿ	43K.	2547	2871	3067	307T	3138
Ceratina calcarata	Y	+2K	. 25.FT	3867	3057	3067	1145
Habropoda laboriosa	Ŷ	435	2547	287T	HOOT	307T	9135
Osmia bicornis bicornis	Y	215	2321	269T	284T	2851	2975
Apis cerana	N	43K	254T	- 2871		+	306P


	Fin	al Decision S	ummary Rep	oort	
Species	Protein	Level 1 Susceptible (Y/N)	(12) cd14086, STKc_CaMKII, Catalytic domain of the Serine/Threonine kinase, Calcium/calmodulin -dependent protein kinase Type II	Level 3 Template	Level 3 Amino Acids (Y/N)
Apis mellifera	calcium/calmodulin- dependent protein kinase II	Y	Y	Apis mellifera	Y
Apis dorsata	calcium/calmodulin- dependent protein kinase type II alpha chain isoform X24	Y	Y	Apis mellifera	Y
Apis florea	calcium/calmodulin- dependent protein kinase type II alpha chain isoform X37	Y	Y	Apis mellifera	Y
Osmia lignaria	calcium/calmodulin- dependent protein kinase type II alpha chain isoform X28	Y	Y	Apis mellifera	Y
Eufriesea mexicana	PREDICTED: calcium/calmodulin- dependent protein kinase type II alpha chain isoform X14	Y	Ŷ	Apis mellifera	Y
Megachile rotundata	PREDICTED: calcium/calmodulin- dependent protein kinase type II alpha chain isoform X9	Y	Y	Apis mellifera	Ŷ
Bombus bifarius	calcium/calmodulin- dependent protein kinase type II alpha chain isoform X18	Y	Y	Apis mellifera	Y
Bombus impatiens	calcium/calmodulin- dependent protein kinase type II alpha chain isoform X17	Y	Y	Apis mellifera	Y
Bombus vosnesenskii	calcium/calmodulin- dependent protein kinase type II alpha chain isoform X17	Y	Ŷ	Apis mellifera	Y
Bombus vancouverensis nearcticus	calcium/calmodulin- dependent protein kinase type II alpha chain isoform X18	Y	Y	Apis mellifera	Y
Bombus terrestris	calcium/calmodulin- dependent protein	Y	Y	Apis mellifera	Y

	kinase type II alpha chain isoform X13				
Megalopta genalis	calcium/calmodulin- dependent protein kinase type II alpha chain isoform X21	Ŷ	Y	Apis mellifera	Y
Nomia melanderi	calcium/calmodulin- dependent protein kinase type II alpha chain isoform X16	Y	Y	Apis mellifera	Y
Dufourea novaeangliae	PREDICTED: calcium/calmodulin- dependent protein kinase type II alpha chain isoform X8	Ŷ	Y	Apis mellifera	Y
Ceratina calcarata	calcium/calmodulin- dependent protein kinase type II alpha chain isoform X19	Y	Y	Apis mellifera	Y
Habropoda laboriosa	PREDICTED: calcium/calmodulin- dependent protein kinase type II alpha chain isoform X8	Y	Y	Apis mellifera	Y
Osmia bicornis bicornis	calcium/calmodulin- dependent protein kinase type II alpha chain, partial	Y	Y	Apis mellifera	Y
Apis cerana	calcium/calmodulin- dependent protein kinase type II alpha chain	Y	Y	Apis mellifera	N


Supporting Information Results 8: SeqAPASS Evaluation Results for cAMP-Responsive Element Binding Protein

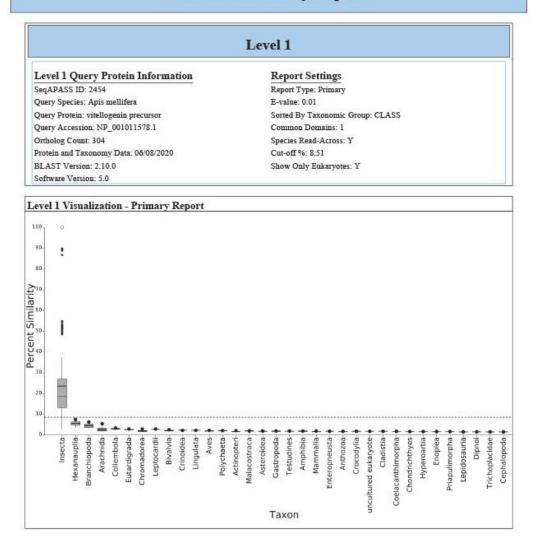
Sequence Alignment to Predict Across Species Susceptibility (SeqAPASS)

Level 1						
Level 1 Query Protein Information	Report Settings					
SeqAPASS ID: 2306	Report Type: Primary					
Query Species: Apis mellifera	E-value: 0.01					
Query Protein: cyclic AMP-responsive element-binding protein 1 isoform X1	Sorted By Taxonomic Group: CLASS					
Query Accession: XP_006570112.1	Common Domains: 1					
Ortholog Count: 423	Species Read-Across: Y					
Protein and Taxonomy Data: 06/08/2020	Cut-off %: 18.25					
BLAST Version: 2.10.0	Show Only Eukaryotes: Y					
Software Version: 5.0						

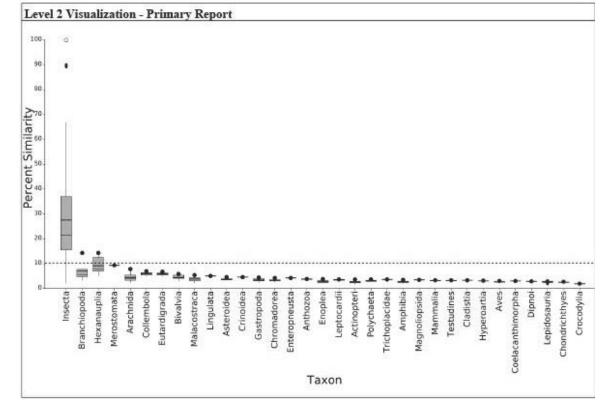
Level 2 Level 2 Query Protein Information Report Settings SeqAPASS ID: 2306 Report Type: Primary Query Species: Apis mellifera E-value: 10.0 Query Domain: (124) pfam02173, pKID, pKID domain Sorted By Taxonomic Group: CLASS Query Accession: XP_006570112.1 Species Read-Across: Y Ortholog Count: 420 Cut-off %: 37.36 Protein and Taxonomy Data: 06/08/2020 Show Only Eukaryotes: Y BLAST Version: 2.10.0 Software Version: 5.0 Level 2 Visualization - Primary Report

Level 3		
Selected Amino Acids	Level 3 Template Protein Information	
130R,131R,132P,133S,134Y	SeqAPASS ID: 2306	
	Template Species: Rattus norvegicus	
	Template Protein: [P15337.1] RecName:	
	Full=Cyclic AMP-responsive element-binding	
	protein 1; Short=CREB-1; Short=cAMP-responsive	
	element-binding protein 1	
	Protein and Taxonomy Data: 06/08/2020	
	BLAST Version: 2.10.0	
	Software Version: 5.0	

Level 3 Visualization


Total Match Partial Match Susceptible Yes Not a Match Susceptible No						
Scientific Name	Similar Susceptibility	Amino Acid 1	Amino Acid 2	Amino Acid 3	Amino Acid 4	Amíno Acid
Rattus norvegicus	¥.	LEOR	IJIR	152P	1335	1349
Megalopta genalis	¥	140R	14IR	142P	1435	144Y
Megachile rotundata	Y	E40R	141R	142P	1435	1144Y
Apis mellifera	¥	INOR.	LUOR	141P	1425	149¥
Apis dorsata	Y	L39R	140R	1412	1425	143¥
Apis florea	¥	E39R	140R	14IP	1425	143Y
Bombus vosnesenskii	Y	LISR	140R	141P	1426	143Y
Bombus impatiens	¥	LISR .	140R	1419	1425	143¥
ombus vancouverensis nearcticus	Y	139R	140R	1419	1425	143¥
Bombus terrestris	¥	139R	140R	141P	1425	143¥
Bombus bifarius	Y	15918	140R	14IP	1425	143Y
Eufriesea mexicana	Y	139R	140R	141P	1425	143¥
Dufourea novaeangliae	¥	1408	141R	L42P	1435	144Y
Nomia melanderi	¥	L40R	141R	142P	1438	344¥
Osmia lignaria	Y	140R	141R.	1422	1435	144Y
Osmia bicornis bicornis	Y	140R	141R	142P	1438	144Y
Apís cerana cerana	¥	139R	LIGR	14IP	1425	143¥
Ceratina calcarata	¥,	140R.	14IR	147P	1438	144Y
Habropoda laboriosa	Y	139R	140R	141P	1425	143¥
Apis cerana	Y	LIST	140R	141P	1425	143¥
Melipona quadrifasciata	N	1411	142L	1438	144F	145W

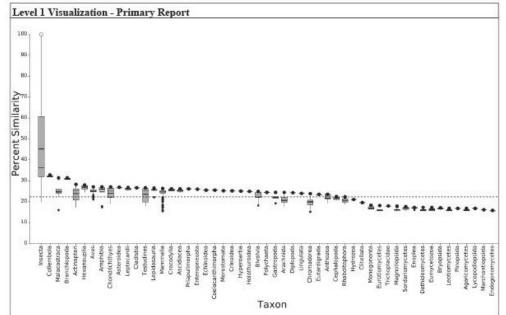
Species	Protein	Level 1 Susceptible (Y/N)	(124) pfam02173, pKID, pKID domain	Level 3 Template	Level 3 Amin Acids (Y/N)
Apis mellifera	cyclic AMP- responsive element- binding protein 1 isoform X1	Y	Y	Rattus norvegicus	Y
Apis florea	cyclic AMP- responsive element- binding protein 1 isoform X1	Y	Y	Rattus norvegicus	Y
Apis dorsata	cyclic AMP- responsive element- binding protein 1 isoform X1	Y	Y	Rattus norvegicus	Y
Bombus vosnesenskii	cyclic AMP- responsive element- binding protein 1 isoform X1	Ŷ	Y	Rattus norvegicus	Y
Bombus impatiens	cyclic AMP- responsive element- binding protein 1 isoform X1	Y	Y	Rattus norvegicus	Y
Bombus vancouverensis nearcticus	cyclic AMP- responsive element- binding protein 1 isoform X1	Y	Y	Rattus norvegicus	Y
Bombus terrestris	cyclic AMP- responsive element- binding protein 1 isoform X1	Y	Y	Rattus norvegicus	Y
Bombus bifarius	cyclic AMP- responsive element- binding protein 1-like isoform X1	Y	Y	Rattus norvegicus	Y
Eufriesea mexicana	PREDICTED: cyclic AMP-responsive element-binding protein 1	Y	Ŷ	Rattus norvegicus	Y
Dufourea novaeangliae	PREDICTED: cyclic AMP-responsive element-binding protein 1 isoform X1	Y	Y	Rattus norvegicus	Y
Nomia melanderi	cyclic AMP- responsive element- binding protein 1 isoform X1	Y	Y	Rattus norvegicus	Y
Osmia lignaria	cyclic AMP- responsive element- binding protein 1 isoform X1	Y	Y	Rattus norvegicus	Y
Osmia bicomis	cyclic AMP-	Y	Y	Rattus norvegicus	Y


bicornis	responsive element- binding protein 1 isoform X1				
Apis cerana cerana	Cyclic AMP- responsive element- binding protein	Y	У	Rattus norvegicus	Y
Ceratina calcarata	cyclic AMP- responsive element- binding protein 1 isoform X2	Y	Y	Rattus norvegicus	Y
Habropoda laboriosa	Cyclic AMP- responsive element- binding protein 1	Y	Y	Rattus norvegicus	Y
Apis cerana	cyclic AMP- responsive element- binding protein 1	Y	Y	Rattus norvegicus	Y
Melipona quadrifasciata	Cyclic AMP- responsive element- binding protein 1	Y	N/A	Rattus norvegicus	N

Supporting Information Results 9: SeqAPASS Evaluation Results for Vitellogenin

Sequence Alignment to Predict Across Species Susceptibility (SeqAPASS)

Level 2					
Level 2 Query Protein Information	Report Settings				
SeqAPASS ID: 2454	Report Type: Primary				
Query Species: Apis mellifera	E-value: 10.0				
Query Domain: (22) pfam01347, Vitellogenin_N, Lipoprotein amino terminal region	Sorted By Taxonomic Group: CLASS				
Query Accession: NP_001011578.1	Species Read-Across: Y				
Ortholog Count: 310	Cut-off %: 10.18				
Protein and Taxonomy Data: 06/08/2020	Show Only Eukaryotes: Y				
BLAST Version: 2.10.0					
Software Version: 5.0					


	Final Decision Su	ummary Report	
Species	Protein	Level 1 Susceptible (Y/N)	(22) pfam01347, Vitellogenin_N, Lipoprote amino terminal region
Apis mellifera	vitellogenin precursor	Y	Y
Apis dorsata	vitellogenin	Y	Y
Apis cerana	vitellogenin precursor	Y	Y
Apis cerana cerana	Vg	Y	Y
Apis florea	LOW QUALITY PROTEIN: vitellogenin	Y	Y
Dufourea novaeangliae	PREDICTED: vitellogenin-like	Y	Y
Habropoda laboriosa	Vitellogenin, partial	Y	Y
Osmia comifrons	vitellogenin	Y	Y
Osmia bicornis bicornis	vitellogenin-like	Y	Y
Osmia lignaria	vitellogenin-like	Y	Y
Bombus vancouverensis nearcticus	vitellogenin-like	Y	Y
Bombus bifarius	vitellogenin-like	Y	Y
Bombus vosnesenskii	LOW QUALITY PROTEIN: vitellogenin-like	Y	Ŷ
Bombus impatiens	vitellogenin	Y	Y
Megachile rotundata	PREDICTED: vitellogenin-like	Y	Y
Bombus hypocrita	vitellogenin	Y	Y
Nomia melanderi	vitellogenin-like	Y	Y
Bombus lantschouensis	Vitellogenin	Y	Y
Bombus terrestris	LOW QUALITY PROTEIN: vitellogenin	Y	Y
Bombus ignitus	vitellogenin	Y	Y
Ceratina calcarata	vitellogenin-like	Y	Y
Melipona quadrifasciata	Vitellogenin, partial	Y	Y
Eufriesea mexicana	PREDICTED: vitellogenin-like	Y	Y
Megalopta genalis	vitellogenin-like isoform X2	Y	Y

Supporting Information Results 10: SeqAPASS Evaluation Results for Methyl Farnesoate Epoxidase

Sequence Alignment to Predict Across Species Susceptibility (SeqAPASS)

Decision Summary Report

Level 1 Level 1 Query Protein Information **Report Settings** SeqAPASS ID: 2456 Report Type: Primary Query Species: Apis mellifera E-value: 0.01 Sorted By Taxonomic Group: CLASS Query Protein: methyl farnesoate epoxidase precursor Query Accession: NP_001314895.1 Common Domains: 1 Ortholog Count: 258 Species Read-Across: Y Protein and Taxonomy Data: 06/08/2020 Cut-off %: 22.23 BLAST Version: 2.10.0 Show Only Eukaryotes: Y Software Version: 5.0

Level 2 Level 2 Query Protein Information Report Settings SeqAPASS ID: 2456 Report Type: Primary E-value: 10.0 Query Species: Apis mellifera Query Domain: (28) pfam00067, p450, Cytochrome P450 Sorted By Taxonomic Group: CLASS Query Accession: NP_001314895.1 Species Read-Across: Y Ortholog Count: 263 Cut-off %: 11.01 Protein and Taxonomy Data: 06/08/2020 Show Only Eukaryotes: Y BLAST Version: 2.10.0 Software Version: 5.0 Level 2 Visualization - Primary Report 100 90 80-Percent Similarity 30ŧ 20-・自 10 ٠ n Insecta-Collembola-lacostraca-Asteroidea-Ciadístia-Crocodylia-Mammaliachiopode richthyes Aves Actinopteri thimorpha

unycetes

amycete

Bryopsi

hideomycete

ueoti primycete logonomycete

archantion (ycopodiop)

myceter

MCEtozo

Enople

donont

Amphibia

anauptie

estudines

Dicloseurie

coneusta

Crinolde

Taxon

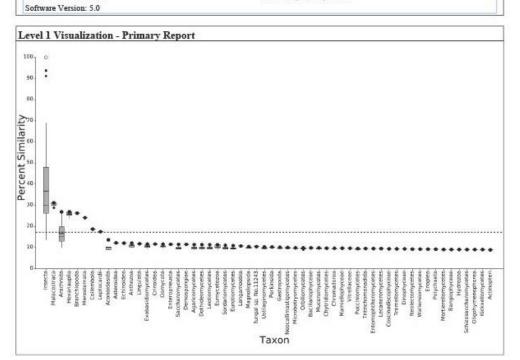
Leptocardi Ascidiaces limorphe Echinoidez

Coelac

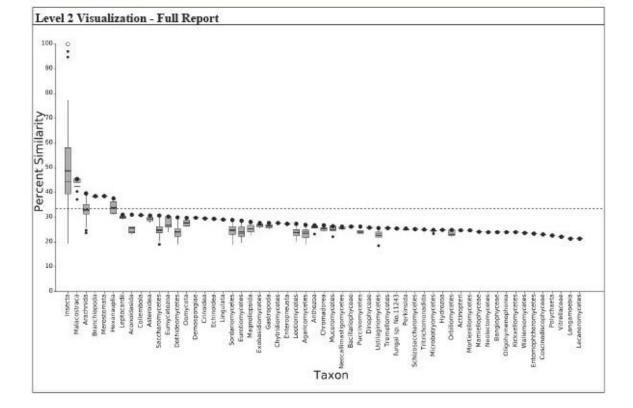
Species	Protein	Level 1 Susceptible (Y/N)	(28) pfam00067, p450, Cytochrome P450	
Apis mellifera	methyl farnesoate epoxidase precursor	Y	Y	
Apis mellifera ligustica	cytochrome P450 15A1	Y	Y	
Apis cerana	methyl farnesoate epoxidase-like	Y	Y	
Apis cerana cerana	cytochrome P450-like protein	Y	Y	
Apis florea	methyl farnesoate epoxidase-like isoform X1	Y	Y	
Apis dorsata	methyl farnesoate epoxidase-like	Y	Y	
Eufriesea mexicana	PREDICTED: methyl farnesoate epoxidase-like	Y	Ŷ	
Bombus vosnesenskii	methyl farnesoate epoxidase-like	Y	Y	
Bombus impatiens	methyl farnesoate epoxidase	Y	Y	
Bombus vancouverensis nearcticus	methyl farnesoate epoxidase-like	Y	Ŷ	
Bombus bifarius	methyl farnesoate epoxidase-like	Y	Y	
Bombus terrestris	methyl farnesoate epoxidase	Y	Y	
Habropoda laboriosa	PREDICTED: methyl farnesoate epoxidase-like	Y	Y	
Osmia bicornis bicornis	methyl farnesoate epoxidase-like isoform X2	Ŷ	Ŷ	
Osmia lignaria	methyl farnesoate epoxidase-like	Y	Y	
Megalopta genalis	methyl farnesoate epoxidase-like	Y	Y	
Ceratina calcarata	methyl farnesoate epoxidase-like	Y	Y	
Dufourea novaeangliae	PREDICTED: methyl farnesoate epoxidase-like	Y	Y	
Nomia melanderi	methyl farnesoate epoxidase-like	Y	Ŷ	

Supporting Information Results 11: SeqAPASS Evaluation Results for Juvenile Hormone Acid O-

Methyltransferase


Sequence Alignment to Predict Across Species Susceptibility (SeqAPASS)

Decision Summary Report


Level 1

Level 1 Query Protein Information SeqAPASS ID: 2506 Query Species: Apis mellifera Query Protein: juvenile hormone acid O-methyltransferase Query Accession: NP_001314896.1 Ortholog Count: 434 Protein and Taxonomy Data: 06/08/2020 BLAST Version: 2.10.0

Report Settings Report Type: Primary E-value: 0.01 Sorted By Taxonomic Group: CLASS Common Domains: 1 Species Read-Across: Y Cut-off %: 17.12 Show Only Eukaryotes: Y

Level 2 Level 2 Query Protein Information **Report Settings** SeqAPASS ID: 2506 Report Type: Primary Query Species: Apis mellifera E-value: 10.0 Query Domain: (37) pfam13649, Methyltransf_25, Methyltransferase domain Sorted By Taxonomic Group: CLASS Query Accession: NP_001314896.1 Species Read-Across: Y Ortholog Count: 438 Cut-off %: 33.45 Protein and Taxonomy Data: 06/08/2020 Show Only Eukaryotes: Y BLAST Version: 2.10.0 Software Version: 5.0

Species	Protein	Level 1 Susceptible (Y/N)	(37) pfam13649, Methyltransf_25, Methyltransferase doma
Spinite			
Apis mellifera	juvenile hormone acid O- methyltransferase	Y	Y
Apis mellifera ligustica	juvenile hormone acid methyltransferase	Y	Y
Apis cerana	juvenile hormone acid O- methyltransferase	Y	Y
Apis dorsata	juvenile hormone acid O- methyltransferase	Y	Y
Apis cerana cerana	Putative methyltransferase 235L	Y	Y
Ceratina calcarata	juvenile hormone acid O- methyltransferase	Y	Y
Bombus terrestris	juvenile hormone acid O- methyltransferase	Y	Y
Eufriesea mexicana	PREDICTED: juvenile hormone acid O-methyltransferase	Y	Y
Bombus bifarius	juvenile hormone acid O- methyltransferase	Y	Y
Habropoda laboriosa	PREDICTED: juvenile hormone acid O-methyltransferase	Y	Y
Bombus vancouverensis nearcticus	juvenile hormone acid O- methyltransferase	Y	Y
Bombus impatiens	juvenile hormone acid O- methyltransferase	Y	Y
Bombus vosnesenskii	juvenile hormone acid O- methyltransferase	Y	Y
Osmia lignaria	juvenile hormone acid O- methyltransferase isoform X1	Y	Y
Osmia bicornis bicornis	juvenile hormone acid O- methyltransferase isoform X1	Y	Y
Megachile rotundata	PREDICTED: uncharacterized protein LOC100877526	Y	Y
Megalopta genalis	juvenile hormone acid O- methyltransferase isoform X1	Y	Y
Dufourea novaeangliae	PREDICTED: juvenile hormone acid O-methyltransferase	Y	Y
Nomia melanderi	juvenile hormone acid O- methyltransferase isoform X1	Y	Y
Melipona quadrifasciata	hypothetical protein WN51_13199	Y	Ŷ