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1. QMRF



QMRF

1) QSAR Identifier
1) Title

EPA’s Computational Chemistry and Cheminformatics Branch Water Solubility Model
2) Related Models

No related models.
3) Software Coding Model

R Studio Version 1.4.1717 A language and environment for statistical computing.
https://www.R-project.org/
PaDEL descriptors V2.21 Open source software to calculate molecular descriptors and 
fingerprints. Chun Wei Yap (phayapc@nus.edu.sg) 
http://padel.nus.edu.sg/software/padeldescriptor

2) General Information
1) Date of QMRF

10/18/2022
2) QMRF Authors & Contact Information

Nathaniel Charest, ORAU research fellow at the Center for Computational Toxicology 
and Exposure, US Environmental Protection Agency, charest.nathaniel@epa.gov
Charles Lowe, Chemist at Center for Computational Toxicology and Exposure, US 
Environmental Protection Agency, lowe.charles@epa.gov

3) Date of QMRF Updates
4) Summary of QMRF Updates
5) Model Developers & Contact Information

Charles Lowe, Chemist at Center for Computational Toxicology and Exposure, US 
Environmental Protection Agency, lowe.charles@epa.gov
Nathaniel Charest, ORAU research fellow at the Center for Computational Toxicology 
and Exposure, US Environmental Protection Agency, charest.nathaniel@epa.gov

6) Date of Model Development & Publication
2022

7) Primary Related Publications
TBD

3) Dataset Information
1) Data Curation Strategy
2) List of Datasets & Availability

i. eChemPortal (ECHA 2022) is a database of physicochemical properties and 
toxicity measurements provided by the OECD. 

ii. Advanced Digital Design of Pharmaceutical Therapeutics (ADDoPT 2022) is a 
collaboration between pharmaceutical companies and academia to establish 
digital design approaches more usable for drug discovery. 

iii. AqSolDB (Sorkun 2019) is a data collection resulting from work described in a 
publication by Sorkun et al. 

iv. The Bradley dataset (Bradley 2015) is a collection of measured solubilities from 
the Open Notebook Science Challenge. 

mailto:charest.nathaniel@epa.gov


v. The Online chemical modeling environment (Sushko 2011) is a physical property 
database and modeling platform with data sets provided by the users. 

vi. LookChem (LookChem 2022) is a global chemical trading platform which 
includes physical property values for advertised chemicals. A caveat with this 
source is that each entry lacks a citation, thus it was difficult to rectify if 
physicochemical properties were really measured or predicted. 

vii. QSAR DataBank (Ruusmann 2015) is a repository of QSA/PR models and 
associated data following the FAIR (Findable, Accessible, Interoperable, Re-
usable) principles. 

viii. PubChem (Kim 2021) is an open chemistry database developed by the National 
Institutes of Health. 

ix. The OPEn structure–activity/property Relationship App (OPERA) (Mansouri 
2018) is a collection of models and associated data developed by Mansouri et al.

4) OECD Principle 1 – Defining The Endpoint
1) Species

i. Not applicable
2) Endpoint

i. OECD Physical Chemical Properties 1.3 Water Solubility
3) Comments on Endpoint

i. The solubility is the maximum amount of a solute than can be dissolved in a 
substance at a given temperature. This model predicts solubility for chemicals 
measured between 20 – 30 degrees Celsius. Predicted solubility is expected to 
be approximate within this temperature range.

4) Endpoint Units
i. Base-10 Logarithm (Moles/Liter) [Log(M)]

5) Dependent Variable
i. Water solubility

6) Theoretical Description of Endpoint
i. Water solubility has a well-understood mechanism of emergence from straight-

forward statistical physics. It is an equilibrium quantity derived from comparing 
the energetics of a solute molecule being surrounded by solvent molecules 
(solvated phase) versus the energetics of the solute molecule being surrounded 
by other solute molecules (solute phase). The transition is a single-step process 
governed by passage of a molecule through the interface between the bulk and 
the solvent. There are not multiple mechanisms relating structural features to 
the endpoint.

5) OECD Principle 2 – Defining The Algorithm
1) Structural Representation

i. PaDEL descriptors [ref] were selected based on expert judgement of their 
relationship to capturing the solvation energetics

2) Descriptors In Model
i. XLogP



1. Additive SAR model predicting the water-octanol partition coefficient. 
Thermodynamically relatable to water-bulk partition coefficient, thus 
relating to water solubility.

2. Ref
ii. SIC0

1. Structural information content index. Briefly, captures atomic diversity 
in molecular graph normalized by number of atoms. Relatable to 
structural complexity and potential interactions with solvent.

2. Roy, Basak, Harriss, Magnuson. “Neighborhood Complexities and 
Symmetry of Chemical Graphs and Their Biological Applications”. 
Mathematical Modeling In Science And Technology. Fourth 
International Conference. 1983.

iii. ZMIC3
1. Z-Modified information content index, order 3. Briefly, captures 

diversity of 3rd order atomic connectivity within the molecular graph. 
This can encode common functional groups with relevance to water 
solubility, such as amine or alcohols.

2. King, J. A Z-Weighted Information Content Index. Int. J. of Quan. 
Chemistry. 1989.

iv. piPC7
1. Path count of 7th-order pi-conjugation in the molecular graph. High 

degrees of pi-conjugation allow for greater induction effects than can 
affect polar moments or polarizability, thus influencing solute-solute 
and solvent-solute interactions.

v. piPC5
1. Path count of 5th-order pi-conjugation in molecular graph. Captures 

benzene rings. High degrees of pi-conjugation will affect the 
polarizability of the molecule and influence the energetics of aqueous 
solvation.

2.
vi. nAcid

1. Number of acidic protons. The ability to form acid-base pairs directly 
influences the charge state of the aqueous species and therefore affects 
the energetics of solvation.

vii. nHBAcc
1. Number of hydrogen bond acceptors. The ability to interact with the 

hydrogen bond network will influence the energetics of solvation.
viii. nHBDon

1. Number of hydrogen bond donors. The ability to interact with the 
hydrogen bond network will influence the energetics of solvation.

ix. GATS1s
1. Geary autocorrelation coefficient, lag one, weighted by Gasteiger 

charge. Spatial autocorrelation of atomic charge separated by one bond. 
Captures local motifs that affect the energetics of solvent interaction.



x. GATS1m
1. Geary autocorrelation coefficient, lag one, weighted by mass. Spatial 

autocorrelation of weighted by atomic mass separated by one bond. 
Captures local motifs that affect the energetics of solvent interaction.

xi. GATS1e
1. Geary autocorrelation coefficient, lag one, weighted by 

electronegativity. Spatial autocorrelation of weighted by 
electronegativity separated by one bond. Captures local motifs that 
affect the energetics of solvent interaction.

xii. GATS1p
1. Geary autocorrelation coefficient, lag one, weighted by polarizability. 

Spatial autocorrelation of weighted by polarizability separated by one 
bond. Captures local motifs that affect the energetics of solvent 
interaction.

xiii. GATS1i
1. Geary autocorrelation coefficient, lag one, weighted by ionization 

potential. Spatial autocorrelation of weighted by ionization potential 
separated by one bond. Captures local motifs that affect the energetics 
of solvent interaction.

xiv. GATS2e
1. Geary autocorrelation coefficient, lag one, weighted by 

electronegativity. Spatial autocorrelation of weighted by 
electronegativity separated by two bonds. Captures local motifs that 
affect the energetics of solvent interaction. Longer range separation of 
electronegativities could embed polar moments that can interact with 
the aqueous solvent. 

xv. GATS1v
1. Geary autocorrelation coefficient, lag one, weighted by van der Waals 

volume. Spatial autocorrelation of van der Waals volume separated by 
one bond. Captures local motifs of atomic arrangements. 

xvi. GATS1c
1. Geary autocorrelation coefficient, lag one, weighted by gasteiger charge 

Spatial autocorrelation of charge separated by one bond. Captures 
separation of charges across single bonds, which may influence 
interactions with a polar solvent like water. 

xvii. nHBAcc
1. Number of hydrogen bond acceptors. Interaction with the hydrogen 

bond network of the aqueous solvent is expected to impact the 
energetics of solvation.

xviii. nHBDon
1. Number of hydrogen bond donors. Interaction with the hydrogen bond 

network of the aqueous solvent is expected to impact the energetics of 
solvation.

xix. nAcid



1. Number of acidic groups. Acidic groups that can deprotonate and form 
formal charges 

3) Descriptor Selection
i. Descriptors were first decorrelated by identifying descriptors with Spearman 

correlations of 0.95 or above. Pairs were resolved by taking the descriptor with 
the higher correlation with the endpoint. This process was implemented by 
Caret, the R package. Descriptors were then selected first by training a random 
forest algorithm and determining the importance assigned by the algorithm to 
each descriptor. The top 16 most important descriptors were reviewed and 
reconciled with chemical intuition, with expert judgements and replacements 
made where another descriptor was considered to be more holistically 
representative of the energetics of solvation.

4) Descriptor Calculation Software
i. Descriptors were calculated by OPERA v2.7 software by Kamel Mansouri & 

Antony Williams (Mansouri & Williams 2018). Inputs to the software are SMILES 
strings that were standardized to be QSAR ready by the Hazard Comparison 
Dashboard’s standardizer (ref). These standardized SMILES were then passed to 
OPERA for descriptor calculation.

5) Regression Algorithm
i. Random Forest

1. Ensemble method based on Breiman, 2004. 1000 decision trees are 
trained. Each tree is exposed to a data set bootstrapped with 
replacement from the total training set. At each split in a decision tree, 
4 descriptors are considered. Splits are determined based on 
minimization of the variance of the dependent variable in each leaf. This 
process is repeated, growing trees to unrestricted depth with no 
pruning. The model’s final estimate is the arithmetic average of all 
decision trees’ predictions.

6) Software Details
7) Chemicals/Descriptors Ratio

i. 8037 chemicals / 16 descriptors = 502.31
6) Defining The Applicability Domain

1) Qualitative Description
i. The data used to train the models overwhelmingly represents the space of small 

organic molecules with primarily light atoms as composition. Experimental 
results reported in the publication text show some transferability of learning 
between small organic functional groups when they are excluded, however 
significant failure is shown when heavier atomic functional groups like metallics 
or metalloids are considered.

2) Quantitative Description
i. The OPERA Local Index was applied to quantitatively compare a similarity index 

to the performance of the model. There is a roughly linear decline in root mean 
squared error as compounds with increasingly high similarity indices are 
excluded. The publication text illustrates the full detail.



3) Limits of Applicability
i. This model is not recommended for molecules with metallic or metalloid atoms. 

Based on the usage, the OPERA local index can be used to approximate the 
expected performance of the model based on a compound’s similarity to 
nearest neighbors in the training set.

7) Internal Validation
1) Training Set Availability

i. Yes
2) Training Set Identifiers
3) Descriptor Available

i. Yes
4) Endpoints Available

i. Yes
5) Training Set Construction

i. Training set was constructed via a stratified splitting to capture 8037 of 10207 
chemicals from the complete pool (~79%). 

6) Internal Statistics
i. Performance on Training Set

1. 0.97 Coefficient of Determination
2. 0.41 Root-mean-squared Error

ii. Leave-many-out on Training Set
1. 5-fold Cross Validation

a. 0.82 Average of 5 folds
b. 0.96 Root-mean-squared Error
c. Plot of predictions is available in Section 10

iii. Out-of-bag estimation
1. 0.81 Coefficient of Determination
2. 0.98 Root-mean-squared Error

8) External Validation
1) Testing Set Availability

i. Yes
2) Testing Set Identifiers
3) Descriptors Available

i. Yes
4) Endpoints Available

i. Yes
5) Testing Set Construction

i. Testing set was constructed as the remaining set after the training set was 
selected using the procedure outlined in section 7.5

6) External Statistics
i. 0.82 Coefficient of Determination

ii. 0.97 Root-mean-squared Error
7) Comments on Predictivity



i. The agreement between internal validation statistics and external statistics 
suggests the model is relatively stable within the chemical space covered by the 
training set. This is reinforced by the behavior of the performance statistics 
versus the OPERA Local Index thresholds used to characterize the applicability 
domain.

ii. The model is not suitable for compounds outside chemical space that is covered 
by the training set.

9) Mechanistic Interpretation
1) Each of the descriptors passed to the model were selected for their ability to 

parameterize structural elements that can contribute to the energetics of solvation. 
Detailed relating of these descriptors to the energetics of solvation is discussed in 
section 5.2. Random forest regressors derive internal forms of similarity by reducing 
variance of the endpoint in clusters after performing splits on descriptors. Because 
these descriptors are related to the energetics of solvation, it is expected that the 
decision tree clustering process will result in clusters with similar structural 
contributions to the energetics determining the ratio of molecules in the bulk versus the 
solvated phase. Thus, the clusters are expected to capture structural relationships to the 
water solubility based on first principle arguments.

Individual decision trees are exposed to different samplings of the training set based on 
bootstrapping with replacement. This results in differing predictions of most similar 
training compound by differing trees, mitigating overfitting and better abstracting 
higher-level patterns in the descriptors that result in similar solvation energetics.

2) This mechanism is a combined a prior and a posteriori mechanism. Descriptors were 
initially found by a machine learning approach, requiring a posteriori interpretation; 
however, based on expert judgement certain descriptors were exchange based on a 
priori recommendations about the relevance of descriptors to the energetics of 
solvation.
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