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Supplemental Information S1: Methods 
S1.1 Half-Life Dataset assembly 

S1.1.1 Dependent variable 

We modeled in vivo serum t1/2 data for 11 PFAS chemicals using published 

experimentally collected data from four species. Chemicals included Perfluorooctanoic acid 

(PFOA), Perfluorooctanesulfonic acid (PFOS), Perfluorobutanesulfonic acid (PFBS), 

Perfluoroheptanesulfonic acid (PFHpS), Perfluorohexanesulfonic (PFHxS) acid, 

Perfluorobutanoic acid (PFBA), Perfluoropentanesulfonic acid (PFPeS), Perfluorohexanoic acid 

(PFHxA), Perfluorodecanoic Acid (PFDA), Perflouro-2-methyl-3-oxahexanoic acid (GenX) and 

Perfluoro(2-((6-chlorohexyl)oxy)ethanesulfonic acid (F-53B). The latter two chemicals are 

commercial formulations and, respectively, consist of the desalted chemical for Genx and the 

major component of what is usually a racemic compound for F-53B. Species include humans, 

monkey (presumably Macaca fascicularis, the cynomolgus monkey), mouse (presumably Mus 

musculus), and rat (presumably Rattus rattus). Data from both sexes of each species were also 

included, as available. See the Supplemental Information (S3.1) for all raw values extracted from 

the literature.  

Data presented in the literature consisted of measured and calculated mean t1/2 values per 

species, sex, and chemical that were usually accompanied by measures of variance (standard 

deviation, standard error, or 95% confidence interval). Some data sources presented t1/2 as single 

point values. Some sources for non-human studies also considered the effects of dose 

concentration on toxicokinetic parameters, dosing method (oral gavage (Oral) versus intravenous 
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(IV)) and dose frequency (single versus multiple). While some studies used non-compartmental 

models and, thus, presented a single parameter for t1/2, multiple studies used compartmental 

toxicokinetic models and presented both initial (α) and longer-term (β, γ) phases of half-life. In 

addition, while some chemicals/species/sex/dosing methods were represented by single values or 

value ranges from single papers, others had values reported from multiple sources.  

 To generate a single value of t1/2 value per chemical, species, sex, and dosing method for 

our training set, we processed the available data in the following way. First, if a single literature 

value was available per chemical/species/sex/dosing method, that value was used. If multiple 

phases were presented (that is, α,β), only the last phase was selected. If only a single value was 

available for both sexes of species/dosing method, that value was assumed for both sexes/dosing 

method. If only replicate values were available per chemical/species/sex/dosing method without 

measures of variance, a mean of the available values was used. When data from multiple sources 

were available with measures of variance, we used a Monte Carlo approach to generate random 

samples from within individual ranges of presented values using standard errors (SE) as the bounds 

of the range. If standard deviations were presented, they were converted to SE and were divided 

by the square root of the sample size noted in the publication (or 3 if not noted, the minimum 

required for a standard error, and the size often used in vivo toxicokinetic studies). If 95% 

confidence intervals were presented, bounds were divided by 1.96. Some 

chemical/species/sex/dosing method combinations had a mixture of sources that included some 

with both means and measures of variance and some that had single point estimates. In this 

situation, the mean standard deviation of the sources with presented standard deviations was 

calculated. Then, it was assigned as a standard error to each single estimate by dividing it by the 

sample size for the point estimate listed in the text of the source publication. In the case that a 
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source contributed a point estimate from a single animal, it was assigned a standard error of 0. 

Distributions were generated by randomly sampling N animals (N = the sample size used in 

generating the source estimate) from within the SE bounds assigned to each source, storing these 

samples in a vector, and then repeating this process 100 times. Thus, each contributing study was 

proportionately represented in the complete vector of sampled values. Lastly, we fit a distribution 

to all combined in silico generated data points and used the mean of this distribution as the t1/2 

value in our training set for the corresponding chemical/species/sex/dosing method. Distributions 

were fit using the R package fitdistrplus1, and an appropriate distribution (between the normal, 

lognormal, gamma, and exponential) was chosen based on the lowest AIC score.    

The distribution of available datapoints was inconsistent per species and sex, resulting in a 

total of 91 datapoints used in model construction. Of these, 50 were distinct measures by species 

and sex. See the Supplemental Information (S2.2) for the compiled processed dataset used for 

QSPR model construction.   
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S1.1.2 Independent variables 

Descriptors Total Considered Examined with 

Recursive Feature 

Elimination 

Parsimonious Model 

Physiological 21 21 4 

Critical Micellular 

Concentration 

2 0 0 (could not be 

predicted) 

Endogenous Ligand 

Similarity 

67 67 3 

Serum Albumin 

Binding 

3 3 1 

Liver fatty acid binding 

protein 

2 2 1 

Physico-chemical 22 22 5 

Categorical 2 0 2 

Total 119 115 16 

Table S1.1 Counts of Descriptors Considered 

An important challenge in using machine learning techniques is in assembling a suitable 

set of descriptors. In the case of PFAS, differences between species and sex that complicate model 

estimation are likely driven by a mix of physiological and chemical differences. First, PFAS 

excretion from blood is largely accomplished through urine via the kidneys.2, 3 Furthermore, PFAS 

chemicals may be re-absorbed in the kidney by receptors intended to re-uptake fatty acids, a 

process influenced by sex in some species.3, 4 For example, hexanoic acid (C6H12O2) is a fatty acid 

naturally found in animal fats that is analogous in structure to Perfluorohexanoic acid (PFHxA) 

(C6HF11O2). The excretion and re-uptake of both compounds in the kidney might be accomplished 

through similar receptor mediated transporters 5. If PFAS activate similar metabolic pathways of 

endogenous compounds more generally, similarity to endogenous compounds may be a predictor 
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of t½. Lastly, PFAS have various chemical properties and structures depending upon their intended 

use. For example, some tend to form micelles, be more water soluble, or contain specific chemical 

structures that promote or retard metabolism. Therefore, both chemical properties and particular 

structures likely influence t½.  

With this information in mind, we assembled a set of chemical and physiological 

descriptors as potential predictors of t½. These data included:  

Physio-chemical characteristics: Serving as the basis of our descriptor dataset, a suite of 

17 physio-chemical characteristics predicted by the OPERA modeling platform 6 were associated 

with each PFAS chemical. OPERA models themselves have defined applicability domains based 

on both the local and global neighborhood measures. For our training dataset, we only included 

OPERA models as predictors if at least half of the training chemicals in our dataset fell within the 

global domain of the model and had nearest neighbor scores of at least 50% (that is, within local 

domain). We also included average molecular mass as a potential predictor, available from the 

USEPA CompTox Dashboard7.  

Kidney characteristics. As the kidney is a primary site of PFAS metabolism8, and 

metabolism may be influenced by physical aspects of the kidney, a suite of kidney structure 

characteristics (for example kidney weight, number of nephrons, glomerular surface area) was 

assembled from Oliver 9. For species missing from Oliver 9 (Monkey), data for the four primary 

descriptors (body weight, kidney weight, proximal tubule length, and proximal tubule diameter) 

used in calculating other descriptors were interpolated via linear regression of Log10-transformed 

kidney weight. 10, 11 All regressions were significant (p<0.05) and had R2 ≥ 0.67).          
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Endogenous Chemicals. The similarity of exogenous and endogenous chemicals may 

influence how exogenous chemicals are metabolized in the body,12 and several PFAS chemical 

have similar non-fluorinated endogenous analogs. To incorporate this information into a predictor 

dataset, we identified a set of 894 endogenous compounds (include method here). To assess the 

similarity between PFAS compounds and endogenous compounds, we calculated two sets of 

molecular descriptors, including PubChem and Morgan fingerprints. The PubChem method simply 

constructs a fingerprint based on the presence of absence of a list of molecular characteristics.13 

The latter method is called a “circular” molecular descriptor, as it describes molecular structures 

by way of circular atom neighborhoods.14 We then calculated similarity scores between this set 

and each included PFAS compound using the Tanimoto method (that is, Jaccard similarity).15 The 

Tanimoto scores each of these chemicals for each PFAS chemical was then assembled. From here, 

we reasoned that molecules with the highest or lowest similarities with PFAS chemicals might be 

useful as predictors of toxicokinetic properties. Therefore, the endogenous chemicals with the 

highest and lowest similarity score with each PFAS chemical were identified. Then, all of the 

unique chemicals in this “high-low” set were assembled, along with their similarity scores. Finally, 

because xenobiotics generally have to be very similar to endogenous compounds to activate 

molecular receptors (citation), we discretized similarity values at a threshold value >=0.9 being 

either similar (1) or dissimilar (0). We also considered using the maximum similarity between any 

endogenous chemical in the set as a predictor. However, sets of endogenous chemicals are likely 

to change in the future, and pairwise comparisons between many chemicals are computationally 

expensive. As this would made applications to new chemicals challenging, we decided to not 

include this as predictor.       
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Protein Binding. Perfluorinated chemicals bind to specific proteins in the liver and to 

albumin in serum, which likely influences metabolism rates8. To account for this, experimentally 

derived serum-albumin binding rate constants (Ka(M-1)) 4 and binding rate disassociation constants 

to the fatty acid binding protein (L-FABP) 16 were added for a subset of available PFAS chemicals. 

Ether bond. Some perfluorinated chemicals have been designed to include an ether bond 

in order to facilitate more rapid metabolism. To account for this, a binary descriptor was included 

denoting the inclusion of an ether bond along the carbon backbone. 

Non-included Predictors. Two predictor types that were considered for inclusion but 

ultimately were not included were carbon chain length and critical micelle concentration (CMC). 

Carbon chain length is a commonly considered structural characteristic that influences chemical 

properties.17 However, the definition of carbon chain length is not obvious or consistent for non-

straight chained PFAS chemicals, and the implications of specific definitions of this characteristic 

is beyond the scope of this paper. For the CMC, PFAS chemicals form micelles above a 

concentration, referred to as the CMC.17, 18 As the nature of their metabolism may change as hydro- 

and lipophilic moieties alter past the CMC18, it may be a useful, important predictor of serum half-

life. However, a current model of CMC18 utilizes a descriptor produced via a proprietary software 

(Dragon), making this predictor not readily extendable to novel predictions. The exclusion of these 

two descriptors here is compensated by preliminary work showing that both were strongly 

correlated with other considered predictors. 

S1.1.3 Descriptor Assembly    

When all predictors were assembled, the missing values of descriptors for certain 

species/chemical combinations were interpolated in two steps. First, if values for chemicals were 



Dawson et al. Supplemental Information S1: Methods 

9 

missing for a particular species, then the average of the values of available species was assigned 

to the missing species. If no values were available for any species for a particular chemical, then 

the average value for all available values of that chemical was used.  The result was a dataset with 

91 records and 98 potential predictors. 

Machine learning techniques are prone to overfitting, particularly when there are more 

predictors than dependent data points. This problem is made worse when predictor variables are 

strongly correlated. To reduce these issues, we first identified and eliminated low variance 

descriptors, defined as descriptors with standard deviation/mean < 0.05.  Next, we calculated 

Spearman correlation coefficients between each pair of predictor variables and identified all pairs 

of predictors that were strongly correlated (Spearman’s ρ=0.9). Then, we used the 

“findCorrelation” function of the caret19 package of program R to evaluate each pair of highly 

correlated descriptors and eliminate the more globally correlated descriptors. The result of this 

process was a set of 14 numeric descriptors, which were then mean-centered and scaled by standard 

deviation. Finally, we added two categorical descriptors, including sex (male, female), and dosing 

type as indicated in the literature source documentation (intravenous, oral, other (epidemiological, 

via metabolite extrapolation)). As the final models were intended to be applied to multiple species, 

the species themselves were not included as descriptors. In addition, kidney types of the species in 

the model only included two (multirenculated and unipapillary) out of multiple kidney types. 

Therefore, kidney type was also not included as predictor.  

See the Supplemental Information (S3.3) for the complete training set used for QSPR 

model construction. Note that predictor values were zero-centered and scaled for model 

construction.   
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S1.2 Volume of Distribution (Vd) Modeling 

S1.2.1 Dataset Assembly   

In parallel with the construction of a QSPR model for t1/2, we used the same approach to 

attempt to develop a predictive model for the toxicokinetic volume of distribution (Vd), in units 

of l/kg body weight. This is a theoretical parameter representing the distribution of a chemical in 

the body of an organism by relating the concentration apparent in the plasma with the total amount 

of PFAS present in the body. As Vd cannot be measured directly, it is estimated from fitting models 

to empirical data. A dataset of literature-derived values of Vd was compiled, starting from Pizzuro 

et al. (2019) Table 2,20 which compiled 38 observations spanning five PFAS chemicals, four 

species, and both sexes from various literature sources.21-30 To these, we added 24 calculated Vd 

observations in rats for three chemicals across a range of doses and routes from Huang et al. 

(2019).31 Huang et al. (2019) fit their time-series data with a two compartment model 

parameterized in terms of a primary compartment (V1), α and β rates, and an overall elimination 

rate (kelim), and so we used Vd,ss = V1*(1+k12/k21), where k12 and k21 are the rates between 

the first and second compartments and  

𝛼 =
1

2
∗ (𝑘𝑒𝑙𝑖𝑚 + 𝑘12+𝑘21 +√(𝑘𝑒𝑙𝑖𝑚 + 𝑘12+𝑘21)2 − 4 ∗ 𝑘𝑒𝑙𝑖𝑚 ∗ 𝑘21) 

𝛽 =
1

2
∗ (𝑘𝑒𝑙𝑖𝑚 + 𝑘12+𝑘21 −√(𝑘𝑒𝑙𝑖𝑚 + 𝑘12+𝑘21)2 − 4 ∗ 𝑘𝑒𝑙𝑖𝑚 ∗ 𝑘21) 

as given by O' Flaherty 32.  Calculations for Huang are included in the Supplemental Information 

(S2.6). Further values for Vd were collected from 33-36. The total data set includes 128 values for 
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Vd from eight PFAS chemicals across four species. See Supplemental Information S2.5 for all Vd 

values used in model construction. 

  

S1.2.2 Model construction 

Although the available descriptors were chosen to allow the modeling of half-life, all the 

same descriptors (including kidney structure) were made available to the machine learning 

approaches for Vd. As with half-life, feature selection was used to reduce the number of possible 

predictors to be analyzed. We used the random forest method.  

S1.2.3 Modelling Results and Discussion 

The accuracy of the models with three, four, or five bins ranged from 56% to 37%. A two-

bin model had a 70% accuracy, but the central tendencies of the two bins were distinct from the 

medians of any chemical or species. Thus, the two-bin model seemed to capture the uncertainty in 

the data more than any chemical or species differences. 

The volume of distribution depends on the chemical partitioning into various tissues32, 

which is a function of the tissue composition (water, lipids, proteins, membranes)37 and tissue 

volumes .38 Interspecies differences are essentially driven by relative differences in tissue volumes 

and, to a lesser extent, composition. Differences between chemicals are expected to be driven by 

differences of affinity for the tissue constituents. In comparison to t1/2, the compiled values for Vd 

varied relatively little, with median Vd values ranging across chemicals from 0.139 to 0.368 L/kg, 

and across species from 0.194 to 0.254 L/kg. Thus, the present failure to build more compelling 

models for predicting inter-chemical and -species differences is at least partially a function of the 
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lack of variability among the data relative to the strong uncertainty.  In addition, for only PFOS in 

the rat, Vd ranged widely from 0.0886 to 7.01 L/kg. This broad uncertainty likely confounded 

attempts to build a better predictive model.  Therefore, until something more compelling is 

developed, possibly through additional data generation and curation, we believe that the data set 

median of 0.202 L/kg bodyweight is a reasonable default value for Vd. 
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