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SUPPLEMENTAL MATERIAL 

When analyzing the uncertainty of in vitro TK measurements, there can be key 

differences. Some chemical data are from measurements performed by the U.S. EPA, its 

collaborators, and its contractors, while other data are obtained from the peer-reviewed literature. 

Regardless of the source, for some chemical measurements only a "point" estimate (most likely 

value) is available while in other cases confidence intervals are available (indicated by the suffix 

".dist" referring to distributions). When only a point estimate is available a default coefficient of 

variation is assumed (1), while if a confidence interval is available a distribution with matching 

quantiles (median, lower-, and upper-95th percentile) is used.  

For fup, the influence of the measured value on uncertainty is related to whether the 

measured value for free chemical in plasma was above the limit of detection. If no free fraction 

was detected, a range of values less than the limit of detection are simulated using a uniform 

distribution between min. fup (typically 10-5) and the limit of detection (typically 0.01). If, for a 

fup measurement with a reported distribution, only the upper 95th limit is above the limit of 

detection then the function "rmed0non0u95" is used to simulate a distribution with a median of 

zero and a non-zero upper 95th limit. For cases above the limit of detection a beta distribution 

(which returns results between zero and one) is used, where the parameters have been found to 

be consistent with the median and 95% interval limits. When no distribution is available the 95% 

interval is calculated using +-1.96 coefficient of variation (typically 0.4) * fup with truncation at 0 

and 1. As depicted in Supplemental Figure S1, all values of fup are adjusted for lipid binding by 

the method described by Pearce et al. (2) unless the option "adjusted.funbound.plasma" is set to 

FALSE. Population variability for fup is simulated using a normal distribution truncated to a 

minimum of min. fup and a maximum of 1 (Supplemental Figure S2). 



 

 

As with fup, if only a point estimate is available for Clint then a normal distribution is 

assumed to calculate a lower and upper limit for a 95% interval centered on the reported value. 

Then we check to see if both the median and upper 95th percentiles are above zero; if both are 

zero then all values of Clint are set to zero. If only the upper 95th percentile is above zero then the 

function "rmed0non0u95" is used. Otherwise, draws are made from a log-normal distribution 

(which is, by definition, constrained to produce positive values) using parameters that match the 

quantiles. Finally, all values of Clint are adjusted (if adjusted. Clint is set to TRUE) according to 

the Kilford et al. (3) correction for free fraction of chemical within the hepatocyte clearance 

assay. 
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FIGURE LEGENDS 

Figure S1. Monte Carlo Uncertainty Simulation for Fraction Unbound in Plasma (fup). 

 

Figure S2. Special Considerations for using optim and Beta Distributions when median Fup ~ 1. 

 

Figure S3. Monte Carlo Variability Simulation for Fraction Unbound in Plasma (fup). 

 

Figure S4. Monte Carlo Uncertainty Simulation for Intrinsic Hepatic Clearance (Clint). 

 

Figure S5. Monte Carlo Variability Simulation for Intrinsic Hepatic Clearance (Clint). 



 

 

 

Figure S6. Upper panel: Histogram of intrinsic hepatic clearance (Clint) for chemicals whose 

percent change in equivalent dose (as in Figure 3B) was more negative than -10 % (i.e., the 

lower peak in Figure 3B). Lower panel: Histogram of intrinsic hepatic clearance (Clint) for 

chemicals whose percent change in equivalent dose (as in Figure 3) was less negative than -10 % 

(i.e., the upper peak in Figure 3B). If Clint was provided as a distribution in 

chem.physical_and_invitro.data, its median is plotted here.  

 

Figure S7. The scatter plots of weights versus age of the previous cohort (blue) and updated 

cohort (red) for subgroups: Total, Male, Female.  

 

Figure S8. The scatter plots of heights versus age of the previous cohort (blue) and updated 

cohort (red) for subgroups: Total, Male, Female.  

 

Figure S9. The scatter plots of weights versus heights of the previous cohort (blue) and updated 

cohort (red) for subgroups: Total, Male, Female.  

 

 

 

TABLES 

Compound   Abbrev.  CAS-RN  DTXSID  

 

2, 4-D    2, 4D  94-75-7   DTXSID0020442  

Alachlor    Alac  15972-60-8  DTXSID1022265  

Alprazolam   Alpr  28981-97-7  DTXSID4022577  

Antipyrine   Anti  60-80-0   DTXSID6021117  

Bensulide   Bens  741-58-2  DTXSID9032329  

Bisphenol A   BPA  80-05-7   DTXSID7020182  

Boscalid    Bosc  188425-85-6  DTXSID6034392  

Bosentan   Bose  147536-97-8  DTXSID7046627  

Carbaryl    Cbyl  63-25-2   DTXSID9020247  

Carbendazim   Cbzm  10605-21-7  DTXSID4024729  

Chloridazon   Cdzn  1698-60-8  DTXSID3034872  

Chlorpyrifos   Cpfs  2921-88-2  DTXSID4020458  

Cyclanilide   Cycl  113136-77-9  DTXSID5032600  

Cyclosporin A   CycA  59865-13-3  DTXSID0020365  

Diazinon-o-analog  Diaz  962-58-3  DTXSID5037523  

Diclofenac   Dicl  15307-86-5  DTXSID6022923  

Diltiazem   Dilt  42399-41-7  DTXSID9022940  

Dimethenamid   Dime  87674-68-8  DTXSID4032376  

Etoxazole   Etox  153233-91-1  DTXSID8034586  

Fenarimol   Fena  60168-88-9  DTXSID2032390  

Flufenacet   Fluf  142459-58-3  DTXSID2032552  

Formetanate hydrochloride  Form  23422-53-9  DTXSID4032405  

Hexobarbitone   Hexo  56-29-1   DTXSID9023122  



 

 

Ibuprofen   Ibup  15687-27-1  DTXSID5020732  

Imazalil    Imaz  35554-44-0  DTXSID8024151  

Imidacloprid   Imid  138261-41-3  DTXSID5032442  

Imipramine   Imip  50-49-7   DTXSID1043881  

Metoprolol   Meto  51384-51-1  DTXSID2023309  

Midazolam   Mida  59467-70-8  DTXSID5023320  

Nilvadipine   Nilv  75530-68-6  DTXSID2046624  

Novaluron   Nova  116714-46-6  DTXSID5034773  

Ondansetron   Onda  99614-02-5  DTXSID8023393  

Perfluorooctanoic acid  PFOA  335-67-1  DTXSID8031865  

Permethrin   Perm  52645-53-1  DTXSID8022292  

Phenacetin   Pacn  62-44-2   DTXSID1021116  

Phenytoin   Pytn  57-41-0   DTXSID8020541  

Propamocarb hydrochloride Prop  25606-41-1  DTXSID6034849  

Propyzamide   Prpy  23950-58-5  DTXSID2020420  

Pyrithiobac sodium  Pyri  123343-16-8  DTXSID8032673  

Resmethrin   Resm  10453-86-8  DTXSID7022253  

S-Bioallethrin   S-Bi  28434-00-6  DTXSID2039336  

Simazine   Sima  122-34-9  DTXSID4021268  

Tolbutamide   Tolb  64-77-7   DTXSID8021359  

Triclosan   Tric  3380-34-5  DTXSID5032498  

Valproic acid   Valp  99-66-1   DTXSID6023733  

 

Table S1. Pharmaceutical and non-pharmaceutical compounds used for the analysis with  

chemical names, abbreviations, CAS-RN, and DTXSID 

 

 

 

httk function Descripton Key Arguments 

calc_mc_css Monte Carlo steady state plasma 
concentration for 1 mg/kg/day 

chemical identity 

calc_mc_tk Monte Carlo PBPTK simulations chemical identity, dose 

create_mc_samples Overall function for httk uncertainty and 
variability simulation via Monte Carlo 

 

parameterize_[MODEL] Generate chemcial-specific parameters 
for [MODEL] 

chemical identity 

monte_carlo Perform Monte Carlo variation of 
parameters by fixed coefficients of 
variation (cv) 

which parameters are to 
be varied 

httkpop_mc Perform Monte Carlo using co-varying 
population biometrics 

demographic 
descriptors 

httkpop_generate Generate biometrics for population of 
individuals consistent with requested 
demographics from NHANES 

demographic 
descriptors 



 

 

httkpop_biotophys_default Convert biometrics to general httk 
model parameters 

individual-specific 
biometrics 

invitro_mc Perform Monte Carlo uncertainty and 
variability simulation for in vitro 
measured parameters 

lowest measurable 
values 

Table S2. Descriptions and key arguments of the key functions involved in Monte Carlo 

uncertainty and variability simulation in “httk”. 

 

 

 

   Male  Female  Total 

 

Mexican American 2018 (2514) 2270 (2484) 4288 (4998)   

Other Hispanic  1213 (1358) 1277 (1450) 2590 (2808)  

Non-Hispanic White 3910 (4666) 3823 (4466) 7733 (9132) 

Non-Hispanic Black 2594 (2705) 2629 (2744) 5133 (5449) 

Other   1951 (1092) 1925 (1067) 3876 (2159) 

Total   11,596 (12,335) 12,024 (12,211) 23,620 (24,546) 

        

Table S3. Number of NHANES respondents included in HTTK-Pop dataset, by race/ethnicity  

and sex for updated NHANES 2013-2018. Previous number of NHANES respondents  

(NHANES 2007-2012) are shown in parentheses.  

 

 

 

 

Age range  N  

 

0-3 year   2036 (2289)    

3-6 year   1236 (1285)   

6-11 year   2408 (2503)  

11-18 year  2975 (3020)  

18-65 year  12293 (12758)  

65+ year    2672 (2691)  

        

Table S4. Number of NHANES respondents included in HTTK-Pop dataset by age group 

 for updated NHANES 2013-2018. Previous number of NHANES respondents  

(NHANES 2007-2012) are shown in parentheses.  

 

 

 

 

 

 



 

 

  

     Chemical name  

 

Absolute change (mg/L) 

Minimum  -134.4  Chlorpyrifos   

Maximum  19.60  Imazalil    

Mean   -5.24    

 

Relative change (%) 

Minimum  -99.4  Permethrin   

Maximum  10.9  Imazalil   

Mean   -22.5    

 

Table S5. Minimum, maximum, and mean values of absolute and relative Monte Carlo Css  

change for 95th percentile between before and after the revision of chemical-specific uncertainty 

propagation with the “httk” PBTK model. All 42 chemicals were affected by the revision. 

 

 

 

  

     Chemical name  

 

Absolute change (mg/L) 

Minimum  -98.8  Imazalil   

Maximum  3.05  Ondansetron    

Mean   2.26    

 

Relative change (%) 

Minimum  -49.4  Imazalil   

Maximum  1250.0  Imipramine   

Mean   32.3    

 

Table S6. Minimum, maximum, and mean values of absolute and relative Monte Carlo Css  

change for 95th percentile between the previous “httk” pKa data and updated OPERA pKa data 

with the “httk” PBTK model. 

 

 

 

 

     Chemical name  

 

Absolute change (mg/L) 

Minimum  -3.65  Ibuprofen  

Maximum  11.2  Perfluorooctanoic acid  

Mean   0.56    

 



 

 

Relative change (%) 

Minimum  -21.3  Diclofenac 

Maximum  23.4  Triclosan   

Mean   3.57     

 

Table S7. Minimum, maximum, and mean values of absolute and relative Monte Carlo Css  

change for 95th percentile between the previous cohort (2007-12 NHANES cohort) and updated 

cohort (2013-18 NHANES cohort) with the “httk” PBTK model. 



Function invitro_mc does
Uncertainty First

Output: 𝑓𝑢𝑝 , which is a 

column of parameters.dt, N 
samples representing range 

of uncertainty in Fup

Monte Carlo Uncertainty Simulation 
for Fraction Unbound in Plasma (fup)

Distribution 
Available?

No
fup.meas.mc==FALSE

Yes
Measurement 
Uncertainty?

No
Funbound.plasma.dist==NA

Estimate a confidence interval (CI): 
Fup.med =fup

Fup.l95 = fup*(1-1.96*fup.meas.cv)
Fup.u95 = fup*(1-1.96*fup.meas.cv)

Restrict CI ∈ [0,1]

Extract confidence interval:
Median, lower 95% confidence 
interval (CI), upper CI: Fup.med, 

Fup.l95, Fup.u95

Yes
(This is true only for more 

recent data sets like Wambaugh 
2019 and Paini 2020)

Fup.med
< LOD?

Fup.med == 
0

httk/R/invitro_mc.R
Function invitro_mc()
Lines 296-458 (v2.2.0)
Inputs (matching format in R code or abbreviated as noted):
Fup: short for “Funbound.plasma” in R code, “fup“ in paper 
(Can be a string of three values separated by commas)
Fup.med: Median fup, “Funbound.plasma” in R code
Fup.l95: Lower 95th credible interval value for fup, “Funbound.plasma.l95” in R code
Fup.u95: Upper 95th, “Funbound.plasma.u95” in R code
fup.meas.cv = Coefficient of variation for measurement error
parameters.dt: data table with a column for each parameter and N rows for each 
sample/draw
LOD: Limit of detection, “fup.lod” in R code
min.Fup: minimum  fup , “minimum.Funbound.plasma” in R code
adjusted.funbound.plasma: Boolean for Pearce 2017 in vitro correction to fup

Fup
una: Values that have not been corrected (unadjusted)

fup.meas.mc: Boolean for whether to do uncertainty propagation
Funbound.plasma.dist: Boolean for whether Funbound.plasma is a distribution

Outputs:

𝒇𝒖𝒑: A vector of N fup values (as a column of parameters.dt) 

Yes

No

Fup.l95 
< 1

Set all N samples of 

𝑓𝑢𝑝
𝑢𝑛𝑎 = 1

Yes

Fup.med
> 

min.Fup

Fup.u95 
> 

min.Fup

Draw N values from 
rmed0non0u9

LOD = LOD, u95 = Fup.u95, 
min = min.Fup

Use Pearce (2017) adjustment for 
lipid binding in vitro:

𝒇𝒖𝒑 =F( 𝒇𝒖𝒑
𝒖𝒏𝒂)

No
No

Use optim to estimate Beta 
distribution parameters such 
that we match median, l95, 

and u95*

No

Set all N samples to

𝑓𝑢𝑝
𝑢𝑛𝑎 = Fup

Draw N values

𝑓𝑢𝑝
𝑢𝑛𝑎 ∈ [min.Fup, LOD]

Draw N samples from 
Beta distribution

Yes

Apply 
Pearce 2017 
Correction?

Yes
adjusted.funbound.plasma == TRUE

Leave measured 
values uncorrected:

𝑓𝑢𝑝 = 𝑓𝑢𝑝
𝑢𝑛𝑎

No

Yes

*See 
separate 
diagram for 
special 
consideration 
of Beta 
distribution 
when 
Fup.med is 
near 1

Figure S1



Use optim to estimate 
Beta distribution 

parameters

Output: 𝑓𝑢𝑝, which is N 

samples representing draws 
from a Beta distribution

Special Considerations for using optim and 
Beta Distributions when  median Fup ~ 1

No

Yes

Fup.med
< 0.99

Use optim to estimate Beta 
distribution parameters such 
that we match median, l95, 

and u95

Fup 
== 1

Temporarily set
Fup = 0.999

Select special optim
initial conditions to 

handle Fup ~ 1

Yes

Draw N samples from 
Beta distribution

Yes

True Fup 
< 1

Return Fup to 1, set 

50% of 𝑓𝑢𝑝 = 1

No

No

Figure S2

httk/R/invitro_mc.R
Function invitro_mc()
Lines 394-430 (v2.2.0)
Inputs (matching format in R code or abbreviated as noted):
Fup: short for “Funbound.plasma” in R code, “fup“ in paper 
(Can be a string of three values separated by commas)
Fup.med: Median fup, “Funbound.plasma” in R code
Fup.l95: Lower 95th credible interval value for fup, “Funbound.plasma.l95” in R code
Fup.u95: Upper 95th, “Funbound.plasma.u95” in R code

Outputs:

𝒇𝒖𝒑: A vector of N fup values (as a column of parameters.dt) 



Monte Carlo Variability Simulation 
for Fraction Unbound in Plasma (fup)

Inputs:

𝒇𝒖𝒑: a vector of N possible values for 

the true measured value of fup, as a 
column of data table parameters.dt, 
“Fup” in R code
fup.pop.cv: Coefficient of variation 
for population variability

Outputs:

𝒇𝒖𝒑: A vector of N fup values (as a 

column of parameters.dt)

No
fup.pop.cv==NULL

Yes Population
Variability?

Take each value in vector 
(column) as a population mean

𝑓𝑢𝑝
𝑚𝑒𝑎𝑛= 𝒇𝒖𝒑

Censored 
Distribution

? No

Output: 𝑓𝑢𝑝 , which is a column of 

parameters.dt, N samples representing 
range of variability in Fup

Set all N samples to

𝒇𝒖𝒑= 𝑓𝑢𝑝
𝑚𝑒𝑎𝑛

Calculate N standard 
deviations

𝝈𝒇𝒖𝒑 = fup.pop.cv ∗ 𝑓𝑢𝑝
𝑚𝑒𝑎𝑛

Draw 1 sample each from N 
left-censored normal 

distributions with mean 𝑓𝑢𝑝
𝑚𝑒𝑎𝑛, 

std. dev. 𝝈𝒇𝒖𝒑, and LOD ∈ [0,1]

Yes
fup.censored.dist==TRUE

Note that if all entries 

of 𝑓𝑢𝑝
𝑚𝑒𝑎𝑛 are the same 

this is N draws from the 
same distribution

Draw 1 sample each from N 
truncated normal distributions 

with mean 𝑓𝑢𝑝
𝑚𝑒𝑎𝑛, std. dev. 𝝈𝒇𝒖𝒑, 

∈ [0,1]

Set all values of 𝑓𝑢𝑝
𝑚𝑒𝑎𝑛

that are < min.Fup equal 
to min.Fup

Function invitro_mc does
Variability Second

Figure S3

httk/R/invitro_mc.R
Function invitro_mc()
Lines 505-534 (v2.2.0)



Function invitro_mc does
Uncertainty First

Monte Carlo Uncertainty Simulation 
for Intrinsic Hepatic Clearance (Clint)

Distribution 
Available?

No
clint.meas.mc == FALSE

Yes
Measurement 
Uncertainty?

No
Clint.dist==NA

Clint.med = Clint, 
Confidence interval (CI): 

Clint.l95 = Clint*(1-1.96*clint.meas.cv)
Clint.u95 = Clint*(1-1.96*clint.meas.cv)

Clint.pValue = Clint.pValue

Parse distribution string:
Median, lower 95% CI, upper CI, 

pValue: Clint.med Clint.l95, 
Clint.u95, Clint.pValue

Yes

Inputs (matching format in R code or abbreviated as noted):

Clint: “Clint“ in paper 
(Can be a string of four values separated by commas)
Clint.med: Median Clint

Clint.l95: Lower 95th credible interval value for Clint

Clint.u95: Upper 95th

Clint.pValue: Probability that there was no clearance observed
clint.meas.cv = Coefficient of variation for measurement error
parameters.dt: data table with a column for each parameter and N rows for 
each sample/draw
clint.meas.mc: Boolean for whether to do uncertainty propagation
Clint.dist: Boolean for whether Clint is a distribution
fu,hep: Fraction unbound in hepatocyte assay from Kilford et al. (2008),
“Fhep.assay.correction” in R code
adjusted.clint: Boolean for whether to apply Kilford correction

Outputs:

𝑪𝒍𝒊𝒏𝒕: A vector of N Clint values (as a column of parameters.dt)

Use optim to estimate 
LogNormal distribution 

parameters such that we match 
median, l95, and u95

Yes

Draw N samples from 
LogNormal distribution:

𝑪𝒍𝒊𝒏𝒕
Calculate fraction unbound 
in hepatocyte assay (fu,hep) 
from Kilford et al. (2008)

Set all values

𝐶𝑙𝑖𝑛𝑡 = 0

Clint.u95 
> 0

Set all values

𝐶𝑙𝑖𝑛𝑡 = Clint.med

Output: 𝐶𝑙𝑖𝑛𝑡 , which is a 
column of parameters.dt, N 
samples representing range 

of uncertainty in Clint

Apply 
Kilford 
2008

Correction
?

Yes
adjusted.clint== TRUE

𝐶𝑙𝑖𝑛𝑡 =
𝐶𝑙𝑖𝑛𝑡
𝑓𝑢,ℎ𝑒𝑝

Clint.med
> 0

Draw N values from 
rmed0non0u9

LOD = Clint.u95/100, 
u95 = Clint.u95, min = 0

Yes

No

No

Figure S4

No

httk/R/invitro_mc.R
Function invitro_mc()
Lines 190-285 (v2.2.0)



Monte Carlo Variability Simulation 
for Intrinsic Hepatic Clearance (Clint)

Inputs:

𝑪𝒍𝒊𝒏𝒕: a vector of N possible values 

for the true measured value of Clint, 
as a column of data table, “Clint” in R 
code
clint.pop.cv: Coefficient of variation 
for population variability

parameters.dt: Outputs:

𝑪𝒍𝒊𝒏𝒕: A vector of N Clint values (as a 
column of parameters.dt)

No
clint.pop.cv==NULL

Yes

Population
Variability

?

Take each value in vector 
(column) as a population mean

𝐶𝑙𝑖𝑛𝑡
𝑚𝑒𝑎𝑛= 𝑪𝒍𝒊𝒏𝒕

Poor 
Metabolizers

?

Output: 𝐶𝑙𝑖𝑛𝑡 , which is a column of 
parameters.dt, N samples representing 

range of variability in Clint

Set all N samples to

𝑪𝒍𝒊𝒏𝒕= 𝐶𝑙𝑖𝑛𝑡
𝑚𝑒𝑎𝑛

Calculate N standard 
deviations

𝝈𝒄𝒍𝒊𝒏𝒕 = clint.pop.cv ∗ 𝐶𝑙𝑖𝑛𝑡
𝑚𝑒𝑎𝑛

Draw 1 sample each from N 
truncated normal distributions 

with mean 𝐶𝑙𝑖𝑛𝑡
𝑚𝑒𝑎𝑛, std. dev. 𝝈𝒄𝒍𝒊𝒏𝒕, 
∈ [0,∞]

Function invitro_mc does
Variability Second

Non-Zero 
Clint?

No
All 𝐶𝑙𝑖𝑛𝑡

𝑚𝑒𝑎𝑛 == 0

Select 5% of 𝐶𝑙𝑖𝑛𝑡
𝑚𝑒𝑎𝑛

and reduce ten-fold

Yes

Yes

Figure S5

No

httk/R/invitro_mc.R
Function invitro_mc()
Lines 473-494 (v2.2.0)
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CKD-EPI residual variability

Caroline Ring

11/5/2020

devtools::load_all()
library(data.table)
library(ggplot2)

For reproducibility of the random sampling, set a seed for the random number generator.

set.seed(42)

We’re going to try to back-calculate the log-scale residual variability for the CKD-EPI regression (Levey et
al. 2009) using the info on the natural scale residual variability and the info on the eGFR distribution given
in Levey et al. (2009).

Here’s the math.

On the log scale, the log measured GFR (mGFR) is equal to the log of the CKD-EPI predicted estimated
GFR (eGFR) plus some residual error ϵ.

(1) log mGFR = log eGFR + ϵ

We can assume that ϵ obeys a zero-mean normal distribution with constant variance and some unknown
standard deviation σ (this is a standard assumption for ordinary least-squares regression).

ϵ ∼ Normal(µ = 0, σ = σ)

On the natural scale, the measured GFR (mGFR) is equal to the CKD-EPI predicted estimated GFR (eGFR)
plus some residual error δ.

(2) mGFR = eGFR + δ

What is the distribution of δ? This is the residual variability.

It’s clear from Figure 1 of Levey et al. (2009) that δ does not obey a zero-mean normal distribution with
constant variance. In particular, it seems that variance increases with eGFR.

We can get the distribution of δ from the distribution of ϵ by deriving an equation for δ in terms of ϵ.

Convert the log scale to the natural scale by exponentiating both sides of Equation 1:

(3) mGFR = exp ϵ × eGFR

Combine (2) and (3):
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(4) eGFR + δ = exp ϵ × eGFR

And solve for δ

(5) δ = exp ϵ × eGFR − eGFR = eGFR × (exp ϵ − 1)

That is,

(6) log(δ + eGFR) = ϵ + log(eGFR)

Now, if ϵ ∼ Normal(µ = 0, σ = σ), then

ϵ + log(eGFR ∼ Normal(µ = log(eGFR), σ = σ)

Which means that

(7) log(δ + eGFR) ∼ Normal(µ = log(eGFR), σ = σ)

This implies a three-parameter log-normal distribution for δ: log-scale mean equal to log(eGFR); log-scale
standard deviation equal to σ, and a shift parameter equal to −eGFR. The shift parameter just means
that δ can’t be less than −eGFR – which makes sense, because according to Equation 2, if δ were less than
−eGFR, then mGFR would be negative, which is not physically possible.

So, that means we just need to find the value of σ that does the best job of reproducing the residual summary
statistics provided in Levey et al. (2009), Appendix Table 6.

However, since the distribution of δ depends on eGFR, that means we have to get the right distribution of
eGFR in order to get the right marginal distribution of δ.

Our only information about the distribution of eGFR comes from Table 4 of Levey et al. (2009), in which
they report percentiles of eGFR predicted by the CKD-EPI equation in the “external validation” dataset.

eGFR distribution from Levey et al. 2009, Table 4 (external validation dataset):

eGFR Percent n
<15 3.7% 144
15-29 12.1% 473
30-59 33.2% 1295
60-89 25.5% 992
>90 25.4% 989

From Figure 1 of Levey et al. (2009), the rough upper bound for eGFR looks to be around 150.

This gives us a rough eCDF for eGFR if we compute the cumulative percent at or below each upper bound.

egfr_pct <- data.table(eGFR = c(0, 15, 29, 59, 89, 150),
pct_bin = c(0.0, 3.7, 12.1, 33.2, 25.5, 25.4),
n = c(0, 144,473, 1295, 992, 989))

egfr_pct[, pctile:=cumsum(pct_bin)/100]
egfr_pct[, cumul_n:=cumsum(n)]
egfr_pct[, bin:=c(

"0",
"0-15",
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"15-29",
"30-59",
"60-89",
"89-150")]

knitr::kable(egfr_pct[, .(bin,
n,
cumul_n,
pct_bin,

pctile*100)],
col.names = c("eGFR",

"n in bin",
"Cumulative n",
"% in bin",
"Percentile"))

eGFR n in bin Cumulative n % in bin Percentile
0 0 0 0.0 0.0
0-15 144 144 3.7 3.7
15-29 473 617 12.1 15.8
30-59 1295 1912 33.2 49.0
60-89 992 2904 25.5 74.5
89-150 989 3893 25.4 99.9

Now, this distribution is only for the external evaluation dataset, whereas the reported residual statistics
are for the development dataset. However, I think it’s reasonable to assume that the eGFR distribution is
similar for the external evaluation dataset as for the development dataset.
To sample from this distribution: draw from Uniform[0,1] and apply inverse CDF.
Inverse CDF: numerically solve CDF for a given cumulative probability.
CDF will be estimated by linear interpolation of the percentiles table above. Inverse CDF can likewise be
estimated by linear interpolation, just swapping the independent and dependent variables.

egfr_inv_cdf <- function(x, y_spec, x_in, y_in){
q <- approx(x = y_in,

y = x_in ,
xout = y_spec,

method = "linear",
rule = 2)$y

return(q)
}

Let’s try it. Randomly draw a set of samples from Uniform(0,1). (Actually, we use Uniform(0,0.999), because
the percentages from Appendix Table 6 actually only add up to 0.999.) Then apply the inverse CDF function
to them. This will give a sample from the estimated eGFR distribution.
We draw N = 5504 values to match the number of values in the development dataset.

rvals <- runif(5504, min = 0, max=0.999)
#back-convert using inverse CDF into draws from the approximated eGFR distribution
eGFR_samp <-egfr_inv_cdf(y_spec = rvals,

x_in = egfr_pct$eGFR,
y_in = egfr_pct$pctile)
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Here is what the example distribution of eGFR values looks like:

ggplot(data.frame(eGFR = eGFR_samp),
aes(x=eGFR)) +

geom_histogram()
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Figure 1: Histogram of sampled eGFR values from empirical CDF

Next: set up a function to draw from the distribution of residuals.

We need to find the log-scale SD that reproduces the residual statistics reported in Levey et al. (2009)
Appendix Table 6 for the development dataset: median and IQR of natural-scale residuals; percentage of
eGFR values within 30% of measured GFR; and RMSE on the log-scale.

Although RMSE is not explicitly stated to be on the log scale, I believe that it is actually on the log scale
because of the follow-up paper (Levey et al. 2020), which report RMSE explicitly stated to be on the log
scale that is of the same magnitude. It hardly makes sense for RMSE to be 0.2 if it is on the natural scale
and residuals look like Levey et al. 2009 Figure 1 – it would be a lot higher in that case.

Appendix Table 6 reports the following:

Statistic Value
Median 0.4
IQR 14.7
P30 85.6%

4



Statistic Value
RMSE 0.231

resid_draw <- function(sigma, eGFR) {
#residuals = measured GFR - estimated GFR
epsilon <- rnorm(n=length(eGFR),

mean = 0,
sd = sigma)

delta <- eGFR * (exp(epsilon) - 1)
mGFR <- delta + eGFR
#compute: median, IQR, P30, RMSE
return(c("median" = median(delta),

"IQR" = IQR(delta),
"P30" = 100*sum(abs(delta)/mGFR <= 0.3)/length(delta),

"RMSE" = sqrt(mean(epsilonˆ2))))

}

Now, find a value of sigma that simultaneously optimizes for median, IQR, P30, and RMSE.
Here is the function to be minimized.
It first calls function resid_draw() to draw a set of residuals for a sample of eGFR values (trying to
reproduce the development dataset), and compute the median, IQR, P30, and log-scale RMSE for that set
of residuals. Then, it computes and returns the square root of the sum of squared errors in median, IQR, P30,
and RMSE, compared to the values reported in Levey et al. (2009) Appendix Table 6 for the development
dataset. (In effect, this is the Euclidean distance from the reported values.)
This function draws 1000 different samples of eGFR values and draws a corresponding set of residuals for
each one, so it computes 1000 different sums of squared errors. It then returns the average of these sums of
squared errors. The idea is to average out variability that comes from randomly drawing eGFR values and
residuals.

#Here is the function to be minimized:
optim_fun <- function(sigma, nrep = 1000, N = 5504) {

#do 1000 replicates and average,
#to "average out" variability in the randomly sampled residuals
foo <- t(replicate(nrep,

{
#randomly draw values on unif(0,1)

# N = 5504 in development dataset
rvals <- runif(N, min = 0, max=0.999)
#back-convert using inverse CDF
#into draws from the approximated eGFR distribution
eGFR_samp <- egfr_inv_cdf(y_spec = rvals,

x_in = egfr_pct$eGFR,
y_in = egfr_pct$pctile)

resid_stats <- resid_draw(sigma,
eGFR_samp)
}

))

sqrt(sum((colMeans(foo) - c("median" = 0.4,
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"IQR" = 14.7,
"P30" = 85.6,
"RMSE" = 0.231))ˆ2))

}

Now, let’s do the optimization.

(optim_results <- optim(par = 0.2, #initial value for sigma
fn = optim_fun,
method = "L-BFGS-B",
lower = 1e-6,
upper = Inf))

## $par
## [1] 0.2061534
##
## $value
## [1] 0.4202734
##
## $counts
## function gradient
## 11 11
##
## $convergence
## [1] 0
##
## $message
## [1] "CONVERGENCE: REL_REDUCTION_OF_F <= FACTR*EPSMCH"

The best-fit sigma value is:

optim_results$par

## [1] 0.2061534

What are the calculated residual stats for the selected sigma value, and how do they compare to the reported
values in Appendix Table 6?

resid_samp <- t(replicate(n = 1000,
expr = {

eGFR_samp <- egfr_inv_cdf(y_spec = rvals,
x_in = egfr_pct$eGFR,
y_in = egfr_pct$pctile)

resid_draw(sigma = optim_results$par,
eGFR = eGFR_samp)

}
)
)
resid_stats_avg <- apply(resid_samp, 2, mean)

reported_stats <- c("median" = 0.4,
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"IQR" = 14.7,
"P30" = 85.6,
"RMSE" = 0.231)

df <- data.frame("Original" = reported_stats,
"Optimized" = resid_stats_avg,
check.names = FALSE)

knitr::kable(t(df), format.args = list(digits = 3))

median IQR P30 RMSE
Original 0.40000 14.7 85.6 0.231
Optimized 0.00656 14.9 85.7 0.206
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