

Supplementary Information for

Simulating Toxicokinetic Variability to Identify Susceptible and Highly Exposed

Populations

Miyuki Breen1, John F Wambaugh1, Amanda Bernstein2, Mark Sfeir3, Caroline L Ring1*

1 Center for Computational Toxicology and Exposure, US Environmental Protection Agency,

Research Triangle Park, NC, USA

2 Oak Ridge Institute for Science and Education (ORISE) fellow at the Center for Public Health

and Environmental Assessment, Research Triangle Park, NC, USA

3 Oak Ridge Institute for Science and Education (ORISE) fellow at the Center for Computational

Toxicology and Exposure, Research Triangle Park, NC, USA

*Corresponding Author:

Caroline L Ring

US EPA, Center for Computational Toxicology and Exposure

109 T.W. Alexander Dr.

Research Triangle Park, NC, 27711, U.S.A.

Email: Ring.Caroline@epa.gov

Tel: 919-541-2519

SUPPLEMENTAL MATERIAL

When analyzing the uncertainty of in vitro TK measurements, there can be key

differences. Some chemical data are from measurements performed by the U.S. EPA, its

collaborators, and its contractors, while other data are obtained from the peer-reviewed literature.

Regardless of the source, for some chemical measurements only a "point" estimate (most likely

value) is available while in other cases confidence intervals are available (indicated by the suffix

".dist" referring to distributions). When only a point estimate is available a default coefficient of

variation is assumed (1), while if a confidence interval is available a distribution with matching

quantiles (median, lower-, and upper-95th percentile) is used.

For fup, the influence of the measured value on uncertainty is related to whether the

measured value for free chemical in plasma was above the limit of detection. If no free fraction

was detected, a range of values less than the limit of detection are simulated using a uniform

distribution between min. fup (typically 10-5) and the limit of detection (typically 0.01). If, for a

fup measurement with a reported distribution, only the upper 95th limit is above the limit of

detection then the function "rmed0non0u95" is used to simulate a distribution with a median of

zero and a non-zero upper 95th limit. For cases above the limit of detection a beta distribution

(which returns results between zero and one) is used, where the parameters have been found to

be consistent with the median and 95% interval limits. When no distribution is available the 95%

interval is calculated using +-1.96 coefficient of variation (typically 0.4) * fup with truncation at 0

and 1. As depicted in Supplemental Figure S1, all values of fup are adjusted for lipid binding by

the method described by Pearce et al. (2) unless the option "adjusted.funbound.plasma" is set to

FALSE. Population variability for fup is simulated using a normal distribution truncated to a

minimum of min. fup and a maximum of 1 (Supplemental Figure S2).

As with fup, if only a point estimate is available for Clint then a normal distribution is

assumed to calculate a lower and upper limit for a 95% interval centered on the reported value.

Then we check to see if both the median and upper 95th percentiles are above zero; if both are

zero then all values of Clint are set to zero. If only the upper 95th percentile is above zero then the

function "rmed0non0u95" is used. Otherwise, draws are made from a log-normal distribution

(which is, by definition, constrained to produce positive values) using parameters that match the

quantiles. Finally, all values of Clint are adjusted (if adjusted. Clint is set to TRUE) according to

the Kilford et al. (3) correction for free fraction of chemical within the hepatocyte clearance

assay.

REFERENCES

References

1. Wambaugh JF, Wetmore BA, Ring CL, Nicolas CI, Pearce RG, Honda GS, et al.

Assessing Toxicokinetic Uncertainty and Variability in Risk Prioritization. Toxicol Sci.

2019;172(2):235-51.

2. Pearce RG, Setzer RW, Strope CL, Sipes NS, Wambaugh JF. Httk: R package for high-

throughput toxicokinetics. Journal of Statistical Software. 2017;79(1):1-26.

3. Kilford PJ, Gertz M, Houston JB, Galetin A. Hepatocellular binding of drugs: correction

for unbound fraction in hepatocyte incubations using microsomal binding or drug lipophilicity

data. Drug Metab Dispos. 2008;36(7):1194-7.

FIGURE LEGENDS

Figure S1. Monte Carlo Uncertainty Simulation for Fraction Unbound in Plasma (fup).

Figure S2. Special Considerations for using optim and Beta Distributions when median Fup ~ 1.

Figure S3. Monte Carlo Variability Simulation for Fraction Unbound in Plasma (fup).

Figure S4. Monte Carlo Uncertainty Simulation for Intrinsic Hepatic Clearance (Clint).

Figure S5. Monte Carlo Variability Simulation for Intrinsic Hepatic Clearance (Clint).

Figure S6. Upper panel: Histogram of intrinsic hepatic clearance (Clint) for chemicals whose

percent change in equivalent dose (as in Figure 3B) was more negative than -10 % (i.e., the

lower peak in Figure 3B). Lower panel: Histogram of intrinsic hepatic clearance (Clint) for

chemicals whose percent change in equivalent dose (as in Figure 3) was less negative than -10 %

(i.e., the upper peak in Figure 3B). If Clint was provided as a distribution in

chem.physical_and_invitro.data, its median is plotted here.

Figure S7. The scatter plots of weights versus age of the previous cohort (blue) and updated

cohort (red) for subgroups: Total, Male, Female.

Figure S8. The scatter plots of heights versus age of the previous cohort (blue) and updated

cohort (red) for subgroups: Total, Male, Female.

Figure S9. The scatter plots of weights versus heights of the previous cohort (blue) and updated

cohort (red) for subgroups: Total, Male, Female.

TABLES

Compound Abbrev. CAS-RN DTXSID

2, 4-D 2, 4D 94-75-7 DTXSID0020442

Alachlor Alac 15972-60-8 DTXSID1022265

Alprazolam Alpr 28981-97-7 DTXSID4022577

Antipyrine Anti 60-80-0 DTXSID6021117

Bensulide Bens 741-58-2 DTXSID9032329

Bisphenol A BPA 80-05-7 DTXSID7020182

Boscalid Bosc 188425-85-6 DTXSID6034392

Bosentan Bose 147536-97-8 DTXSID7046627

Carbaryl Cbyl 63-25-2 DTXSID9020247

Carbendazim Cbzm 10605-21-7 DTXSID4024729

Chloridazon Cdzn 1698-60-8 DTXSID3034872

Chlorpyrifos Cpfs 2921-88-2 DTXSID4020458

Cyclanilide Cycl 113136-77-9 DTXSID5032600

Cyclosporin A CycA 59865-13-3 DTXSID0020365

Diazinon-o-analog Diaz 962-58-3 DTXSID5037523

Diclofenac Dicl 15307-86-5 DTXSID6022923

Diltiazem Dilt 42399-41-7 DTXSID9022940

Dimethenamid Dime 87674-68-8 DTXSID4032376

Etoxazole Etox 153233-91-1 DTXSID8034586

Fenarimol Fena 60168-88-9 DTXSID2032390

Flufenacet Fluf 142459-58-3 DTXSID2032552

Formetanate hydrochloride Form 23422-53-9 DTXSID4032405

Hexobarbitone Hexo 56-29-1 DTXSID9023122

Ibuprofen Ibup 15687-27-1 DTXSID5020732

Imazalil Imaz 35554-44-0 DTXSID8024151

Imidacloprid Imid 138261-41-3 DTXSID5032442

Imipramine Imip 50-49-7 DTXSID1043881

Metoprolol Meto 51384-51-1 DTXSID2023309

Midazolam Mida 59467-70-8 DTXSID5023320

Nilvadipine Nilv 75530-68-6 DTXSID2046624

Novaluron Nova 116714-46-6 DTXSID5034773

Ondansetron Onda 99614-02-5 DTXSID8023393

Perfluorooctanoic acid PFOA 335-67-1 DTXSID8031865

Permethrin Perm 52645-53-1 DTXSID8022292

Phenacetin Pacn 62-44-2 DTXSID1021116

Phenytoin Pytn 57-41-0 DTXSID8020541

Propamocarb hydrochloride Prop 25606-41-1 DTXSID6034849

Propyzamide Prpy 23950-58-5 DTXSID2020420

Pyrithiobac sodium Pyri 123343-16-8 DTXSID8032673

Resmethrin Resm 10453-86-8 DTXSID7022253

S-Bioallethrin S-Bi 28434-00-6 DTXSID2039336

Simazine Sima 122-34-9 DTXSID4021268

Tolbutamide Tolb 64-77-7 DTXSID8021359

Triclosan Tric 3380-34-5 DTXSID5032498

Valproic acid Valp 99-66-1 DTXSID6023733

Table S1. Pharmaceutical and non-pharmaceutical compounds used for the analysis with

chemical names, abbreviations, CAS-RN, and DTXSID

httk function Descripton Key Arguments

calc_mc_css Monte Carlo steady state plasma
concentration for 1 mg/kg/day

chemical identity

calc_mc_tk Monte Carlo PBPTK simulations chemical identity, dose

create_mc_samples Overall function for httk uncertainty and
variability simulation via Monte Carlo

parameterize_[MODEL] Generate chemcial-specific parameters
for [MODEL]

chemical identity

monte_carlo Perform Monte Carlo variation of
parameters by fixed coefficients of
variation (cv)

which parameters are to
be varied

httkpop_mc Perform Monte Carlo using co-varying
population biometrics

demographic
descriptors

httkpop_generate Generate biometrics for population of
individuals consistent with requested
demographics from NHANES

demographic
descriptors

httkpop_biotophys_default Convert biometrics to general httk
model parameters

individual-specific
biometrics

invitro_mc Perform Monte Carlo uncertainty and
variability simulation for in vitro
measured parameters

lowest measurable
values

Table S2. Descriptions and key arguments of the key functions involved in Monte Carlo

uncertainty and variability simulation in “httk”.

 Male Female Total

Mexican American 2018 (2514) 2270 (2484) 4288 (4998)

Other Hispanic 1213 (1358) 1277 (1450) 2590 (2808)

Non-Hispanic White 3910 (4666) 3823 (4466) 7733 (9132)

Non-Hispanic Black 2594 (2705) 2629 (2744) 5133 (5449)

Other 1951 (1092) 1925 (1067) 3876 (2159)

Total 11,596 (12,335) 12,024 (12,211) 23,620 (24,546)

Table S3. Number of NHANES respondents included in HTTK-Pop dataset, by race/ethnicity

and sex for updated NHANES 2013-2018. Previous number of NHANES respondents

(NHANES 2007-2012) are shown in parentheses.

Age range N

0-3 year 2036 (2289)

3-6 year 1236 (1285)

6-11 year 2408 (2503)

11-18 year 2975 (3020)

18-65 year 12293 (12758)

65+ year 2672 (2691)

Table S4. Number of NHANES respondents included in HTTK-Pop dataset by age group

 for updated NHANES 2013-2018. Previous number of NHANES respondents

(NHANES 2007-2012) are shown in parentheses.

 Chemical name

Absolute change (mg/L)

Minimum -134.4 Chlorpyrifos

Maximum 19.60 Imazalil

Mean -5.24

Relative change (%)

Minimum -99.4 Permethrin

Maximum 10.9 Imazalil

Mean -22.5

Table S5. Minimum, maximum, and mean values of absolute and relative Monte Carlo Css

change for 95th percentile between before and after the revision of chemical-specific uncertainty

propagation with the “httk” PBTK model. All 42 chemicals were affected by the revision.

 Chemical name

Absolute change (mg/L)

Minimum -98.8 Imazalil

Maximum 3.05 Ondansetron

Mean 2.26

Relative change (%)

Minimum -49.4 Imazalil

Maximum 1250.0 Imipramine

Mean 32.3

Table S6. Minimum, maximum, and mean values of absolute and relative Monte Carlo Css

change for 95th percentile between the previous “httk” pKa data and updated OPERA pKa data

with the “httk” PBTK model.

 Chemical name

Absolute change (mg/L)

Minimum -3.65 Ibuprofen

Maximum 11.2 Perfluorooctanoic acid

Mean 0.56

Relative change (%)

Minimum -21.3 Diclofenac

Maximum 23.4 Triclosan

Mean 3.57

Table S7. Minimum, maximum, and mean values of absolute and relative Monte Carlo Css

change for 95th percentile between the previous cohort (2007-12 NHANES cohort) and updated

cohort (2013-18 NHANES cohort) with the “httk” PBTK model.

Function invitro_mc does
Uncertainty First

Output: 𝑓𝑢𝑝 , which is a

column of parameters.dt, N
samples representing range

of uncertainty in Fup

Monte Carlo Uncertainty Simulation
for Fraction Unbound in Plasma (fup)

Distribution
Available?

No
fup.meas.mc==FALSE

Yes
Measurement
Uncertainty?

No
Funbound.plasma.dist==NA

Estimate a confidence interval (CI):
Fup.med =fup

Fup.l95 = fup*(1-1.96*fup.meas.cv)
Fup.u95 = fup*(1-1.96*fup.meas.cv)

Restrict CI ∈ [0,1]

Extract confidence interval:
Median, lower 95% confidence
interval (CI), upper CI: Fup.med,

Fup.l95, Fup.u95

Yes
(This is true only for more

recent data sets like Wambaugh
2019 and Paini 2020)

Fup.med
< LOD?

Fup.med ==
0

httk/R/invitro_mc.R
Function invitro_mc()
Lines 296-458 (v2.2.0)
Inputs (matching format in R code or abbreviated as noted):
Fup: short for “Funbound.plasma” in R code, “fup“ in paper
(Can be a string of three values separated by commas)
Fup.med: Median fup, “Funbound.plasma” in R code
Fup.l95: Lower 95th credible interval value for fup, “Funbound.plasma.l95” in R code
Fup.u95: Upper 95th, “Funbound.plasma.u95” in R code
fup.meas.cv = Coefficient of variation for measurement error
parameters.dt: data table with a column for each parameter and N rows for each
sample/draw
LOD: Limit of detection, “fup.lod” in R code
min.Fup: minimum fup , “minimum.Funbound.plasma” in R code
adjusted.funbound.plasma: Boolean for Pearce 2017 in vitro correction to fup

Fup
una: Values that have not been corrected (unadjusted)

fup.meas.mc: Boolean for whether to do uncertainty propagation
Funbound.plasma.dist: Boolean for whether Funbound.plasma is a distribution

Outputs:

𝒇𝒖𝒑: A vector of N fup values (as a column of parameters.dt)

Yes

No

Fup.l95
< 1

Set all N samples of

𝑓𝑢𝑝
𝑢𝑛𝑎 = 1

Yes

Fup.med
>

min.Fup

Fup.u95
>

min.Fup

Draw N values from
rmed0non0u9

LOD = LOD, u95 = Fup.u95,
min = min.Fup

Use Pearce (2017) adjustment for
lipid binding in vitro:

𝒇𝒖𝒑 =F(𝒇𝒖𝒑
𝒖𝒏𝒂)

No
No

Use optim to estimate Beta
distribution parameters such
that we match median, l95,

and u95*

No

Set all N samples to

𝑓𝑢𝑝
𝑢𝑛𝑎 = Fup

Draw N values

𝑓𝑢𝑝
𝑢𝑛𝑎 ∈ [min.Fup, LOD]

Draw N samples from
Beta distribution

Yes

Apply
Pearce 2017
Correction?

Yes
adjusted.funbound.plasma == TRUE

Leave measured
values uncorrected:

𝑓𝑢𝑝 = 𝑓𝑢𝑝
𝑢𝑛𝑎

No

Yes

*See
separate
diagram for
special
consideration
of Beta
distribution
when
Fup.med is
near 1

Figure S1

Use optim to estimate
Beta distribution

parameters

Output: 𝑓𝑢𝑝, which is N

samples representing draws
from a Beta distribution

Special Considerations for using optim and
Beta Distributions when median Fup ~ 1

No

Yes

Fup.med
< 0.99

Use optim to estimate Beta
distribution parameters such
that we match median, l95,

and u95

Fup
== 1

Temporarily set
Fup = 0.999

Select special optim
initial conditions to

handle Fup ~ 1

Yes

Draw N samples from
Beta distribution

Yes

True Fup
< 1

Return Fup to 1, set

50% of 𝑓𝑢𝑝 = 1

No

No

Figure S2

httk/R/invitro_mc.R
Function invitro_mc()
Lines 394-430 (v2.2.0)
Inputs (matching format in R code or abbreviated as noted):
Fup: short for “Funbound.plasma” in R code, “fup“ in paper
(Can be a string of three values separated by commas)
Fup.med: Median fup, “Funbound.plasma” in R code
Fup.l95: Lower 95th credible interval value for fup, “Funbound.plasma.l95” in R code
Fup.u95: Upper 95th, “Funbound.plasma.u95” in R code

Outputs:

𝒇𝒖𝒑: A vector of N fup values (as a column of parameters.dt)

Monte Carlo Variability Simulation
for Fraction Unbound in Plasma (fup)

Inputs:

𝒇𝒖𝒑: a vector of N possible values for

the true measured value of fup, as a
column of data table parameters.dt,
“Fup” in R code
fup.pop.cv: Coefficient of variation
for population variability

Outputs:

𝒇𝒖𝒑: A vector of N fup values (as a

column of parameters.dt)

No
fup.pop.cv==NULL

Yes Population
Variability?

Take each value in vector
(column) as a population mean

𝑓𝑢𝑝
𝑚𝑒𝑎𝑛= 𝒇𝒖𝒑

Censored
Distribution

? No

Output: 𝑓𝑢𝑝 , which is a column of

parameters.dt, N samples representing
range of variability in Fup

Set all N samples to

𝒇𝒖𝒑= 𝑓𝑢𝑝
𝑚𝑒𝑎𝑛

Calculate N standard
deviations

𝝈𝒇𝒖𝒑 = fup.pop.cv ∗ 𝑓𝑢𝑝
𝑚𝑒𝑎𝑛

Draw 1 sample each from N
left-censored normal

distributions with mean 𝑓𝑢𝑝
𝑚𝑒𝑎𝑛,

std. dev. 𝝈𝒇𝒖𝒑, and LOD ∈ [0,1]

Yes
fup.censored.dist==TRUE

Note that if all entries

of 𝑓𝑢𝑝
𝑚𝑒𝑎𝑛 are the same

this is N draws from the
same distribution

Draw 1 sample each from N
truncated normal distributions

with mean 𝑓𝑢𝑝
𝑚𝑒𝑎𝑛, std. dev. 𝝈𝒇𝒖𝒑,

∈ [0,1]

Set all values of 𝑓𝑢𝑝
𝑚𝑒𝑎𝑛

that are < min.Fup equal
to min.Fup

Function invitro_mc does
Variability Second

Figure S3

httk/R/invitro_mc.R
Function invitro_mc()
Lines 505-534 (v2.2.0)

Function invitro_mc does
Uncertainty First

Monte Carlo Uncertainty Simulation
for Intrinsic Hepatic Clearance (Clint)

Distribution
Available?

No
clint.meas.mc == FALSE

Yes
Measurement
Uncertainty?

No
Clint.dist==NA

Clint.med = Clint,
Confidence interval (CI):

Clint.l95 = Clint*(1-1.96*clint.meas.cv)
Clint.u95 = Clint*(1-1.96*clint.meas.cv)

Clint.pValue = Clint.pValue

Parse distribution string:
Median, lower 95% CI, upper CI,

pValue: Clint.med Clint.l95,
Clint.u95, Clint.pValue

Yes

Inputs (matching format in R code or abbreviated as noted):

Clint: “Clint“ in paper
(Can be a string of four values separated by commas)
Clint.med: Median Clint

Clint.l95: Lower 95th credible interval value for Clint

Clint.u95: Upper 95th

Clint.pValue: Probability that there was no clearance observed
clint.meas.cv = Coefficient of variation for measurement error
parameters.dt: data table with a column for each parameter and N rows for
each sample/draw
clint.meas.mc: Boolean for whether to do uncertainty propagation
Clint.dist: Boolean for whether Clint is a distribution
fu,hep: Fraction unbound in hepatocyte assay from Kilford et al. (2008),
“Fhep.assay.correction” in R code
adjusted.clint: Boolean for whether to apply Kilford correction

Outputs:

𝑪𝒍𝒊𝒏𝒕: A vector of N Clint values (as a column of parameters.dt)

Use optim to estimate
LogNormal distribution

parameters such that we match
median, l95, and u95

Yes

Draw N samples from
LogNormal distribution:

𝑪𝒍𝒊𝒏𝒕
Calculate fraction unbound
in hepatocyte assay (fu,hep)
from Kilford et al. (2008)

Set all values

𝐶𝑙𝑖𝑛𝑡 = 0

Clint.u95
> 0

Set all values

𝐶𝑙𝑖𝑛𝑡 = Clint.med

Output: 𝐶𝑙𝑖𝑛𝑡 , which is a
column of parameters.dt, N
samples representing range

of uncertainty in Clint

Apply
Kilford
2008

Correction
?

Yes
adjusted.clint== TRUE

𝐶𝑙𝑖𝑛𝑡 =
𝐶𝑙𝑖𝑛𝑡
𝑓𝑢,ℎ𝑒𝑝

Clint.med
> 0

Draw N values from
rmed0non0u9

LOD = Clint.u95/100,
u95 = Clint.u95, min = 0

Yes

No

No

Figure S4

No

httk/R/invitro_mc.R
Function invitro_mc()
Lines 190-285 (v2.2.0)

Monte Carlo Variability Simulation
for Intrinsic Hepatic Clearance (Clint)

Inputs:

𝑪𝒍𝒊𝒏𝒕: a vector of N possible values

for the true measured value of Clint,
as a column of data table, “Clint” in R
code
clint.pop.cv: Coefficient of variation
for population variability

parameters.dt: Outputs:

𝑪𝒍𝒊𝒏𝒕: A vector of N Clint values (as a
column of parameters.dt)

No
clint.pop.cv==NULL

Yes

Population
Variability

?

Take each value in vector
(column) as a population mean

𝐶𝑙𝑖𝑛𝑡
𝑚𝑒𝑎𝑛= 𝑪𝒍𝒊𝒏𝒕

Poor
Metabolizers

?

Output: 𝐶𝑙𝑖𝑛𝑡 , which is a column of
parameters.dt, N samples representing

range of variability in Clint

Set all N samples to

𝑪𝒍𝒊𝒏𝒕= 𝐶𝑙𝑖𝑛𝑡
𝑚𝑒𝑎𝑛

Calculate N standard
deviations

𝝈𝒄𝒍𝒊𝒏𝒕 = clint.pop.cv ∗ 𝐶𝑙𝑖𝑛𝑡
𝑚𝑒𝑎𝑛

Draw 1 sample each from N
truncated normal distributions

with mean 𝐶𝑙𝑖𝑛𝑡
𝑚𝑒𝑎𝑛, std. dev. 𝝈𝒄𝒍𝒊𝒏𝒕,
∈ [0,∞]

Function invitro_mc does
Variability Second

Non-Zero
Clint?

No
All 𝐶𝑙𝑖𝑛𝑡

𝑚𝑒𝑎𝑛 == 0

Select 5% of 𝐶𝑙𝑖𝑛𝑡
𝑚𝑒𝑎𝑛

and reduce ten-fold

Yes

Yes

Figure S5

No

httk/R/invitro_mc.R
Function invitro_mc()
Lines 473-494 (v2.2.0)

Figure S6

Figure S7

Figure S8

Figure S9

CKD-EPI residual variability

Caroline Ring

11/5/2020

devtools::load_all()
library(data.table)
library(ggplot2)

For reproducibility of the random sampling, set a seed for the random number generator.

set.seed(42)

We’re going to try to back-calculate the log-scale residual variability for the CKD-EPI regression (Levey et
al. 2009) using the info on the natural scale residual variability and the info on the eGFR distribution given
in Levey et al. (2009).

Here’s the math.

On the log scale, the log measured GFR (mGFR) is equal to the log of the CKD-EPI predicted estimated
GFR (eGFR) plus some residual error ϵ.

(1) log mGFR = log eGFR + ϵ

We can assume that ϵ obeys a zero-mean normal distribution with constant variance and some unknown
standard deviation σ (this is a standard assumption for ordinary least-squares regression).

ϵ ∼ Normal(µ = 0, σ = σ)

On the natural scale, the measured GFR (mGFR) is equal to the CKD-EPI predicted estimated GFR (eGFR)
plus some residual error δ.

(2) mGFR = eGFR + δ

What is the distribution of δ? This is the residual variability.

It’s clear from Figure 1 of Levey et al. (2009) that δ does not obey a zero-mean normal distribution with
constant variance. In particular, it seems that variance increases with eGFR.

We can get the distribution of δ from the distribution of ϵ by deriving an equation for δ in terms of ϵ.

Convert the log scale to the natural scale by exponentiating both sides of Equation 1:

(3) mGFR = exp ϵ × eGFR

Combine (2) and (3):

1

(4) eGFR + δ = exp ϵ × eGFR

And solve for δ

(5) δ = exp ϵ × eGFR − eGFR = eGFR × (exp ϵ − 1)

That is,

(6) log(δ + eGFR) = ϵ + log(eGFR)

Now, if ϵ ∼ Normal(µ = 0, σ = σ), then

ϵ + log(eGFR ∼ Normal(µ = log(eGFR), σ = σ)

Which means that

(7) log(δ + eGFR) ∼ Normal(µ = log(eGFR), σ = σ)

This implies a three-parameter log-normal distribution for δ: log-scale mean equal to log(eGFR); log-scale
standard deviation equal to σ, and a shift parameter equal to −eGFR. The shift parameter just means
that δ can’t be less than −eGFR – which makes sense, because according to Equation 2, if δ were less than
−eGFR, then mGFR would be negative, which is not physically possible.

So, that means we just need to find the value of σ that does the best job of reproducing the residual summary
statistics provided in Levey et al. (2009), Appendix Table 6.

However, since the distribution of δ depends on eGFR, that means we have to get the right distribution of
eGFR in order to get the right marginal distribution of δ.

Our only information about the distribution of eGFR comes from Table 4 of Levey et al. (2009), in which
they report percentiles of eGFR predicted by the CKD-EPI equation in the “external validation” dataset.

eGFR distribution from Levey et al. 2009, Table 4 (external validation dataset):

eGFR Percent n
<15 3.7% 144
15-29 12.1% 473
30-59 33.2% 1295
60-89 25.5% 992
>90 25.4% 989

From Figure 1 of Levey et al. (2009), the rough upper bound for eGFR looks to be around 150.

This gives us a rough eCDF for eGFR if we compute the cumulative percent at or below each upper bound.

egfr_pct <- data.table(eGFR = c(0, 15, 29, 59, 89, 150),
pct_bin = c(0.0, 3.7, 12.1, 33.2, 25.5, 25.4),
n = c(0, 144,473, 1295, 992, 989))

egfr_pct[, pctile:=cumsum(pct_bin)/100]
egfr_pct[, cumul_n:=cumsum(n)]
egfr_pct[, bin:=c(

"0",
"0-15",

2

"15-29",
"30-59",
"60-89",
"89-150")]

knitr::kable(egfr_pct[, .(bin,
n,
cumul_n,
pct_bin,

pctile*100)],
col.names = c("eGFR",

"n in bin",
"Cumulative n",
"% in bin",
"Percentile"))

eGFR n in bin Cumulative n % in bin Percentile
0 0 0 0.0 0.0
0-15 144 144 3.7 3.7
15-29 473 617 12.1 15.8
30-59 1295 1912 33.2 49.0
60-89 992 2904 25.5 74.5
89-150 989 3893 25.4 99.9

Now, this distribution is only for the external evaluation dataset, whereas the reported residual statistics
are for the development dataset. However, I think it’s reasonable to assume that the eGFR distribution is
similar for the external evaluation dataset as for the development dataset.
To sample from this distribution: draw from Uniform[0,1] and apply inverse CDF.
Inverse CDF: numerically solve CDF for a given cumulative probability.
CDF will be estimated by linear interpolation of the percentiles table above. Inverse CDF can likewise be
estimated by linear interpolation, just swapping the independent and dependent variables.

egfr_inv_cdf <- function(x, y_spec, x_in, y_in){
q <- approx(x = y_in,

y = x_in ,
xout = y_spec,

method = "linear",
rule = 2)$y

return(q)
}

Let’s try it. Randomly draw a set of samples from Uniform(0,1). (Actually, we use Uniform(0,0.999), because
the percentages from Appendix Table 6 actually only add up to 0.999.) Then apply the inverse CDF function
to them. This will give a sample from the estimated eGFR distribution.
We draw N = 5504 values to match the number of values in the development dataset.

rvals <- runif(5504, min = 0, max=0.999)
#back-convert using inverse CDF into draws from the approximated eGFR distribution
eGFR_samp <-egfr_inv_cdf(y_spec = rvals,

x_in = egfr_pct$eGFR,
y_in = egfr_pct$pctile)

3

Here is what the example distribution of eGFR values looks like:

ggplot(data.frame(eGFR = eGFR_samp),
aes(x=eGFR)) +

geom_histogram()

0

100

200

300

0 50 100 150
eGFR

co
un

t

Figure 1: Histogram of sampled eGFR values from empirical CDF

Next: set up a function to draw from the distribution of residuals.

We need to find the log-scale SD that reproduces the residual statistics reported in Levey et al. (2009)
Appendix Table 6 for the development dataset: median and IQR of natural-scale residuals; percentage of
eGFR values within 30% of measured GFR; and RMSE on the log-scale.

Although RMSE is not explicitly stated to be on the log scale, I believe that it is actually on the log scale
because of the follow-up paper (Levey et al. 2020), which report RMSE explicitly stated to be on the log
scale that is of the same magnitude. It hardly makes sense for RMSE to be 0.2 if it is on the natural scale
and residuals look like Levey et al. 2009 Figure 1 – it would be a lot higher in that case.

Appendix Table 6 reports the following:

Statistic Value
Median 0.4
IQR 14.7
P30 85.6%

4

Statistic Value
RMSE 0.231

resid_draw <- function(sigma, eGFR) {
#residuals = measured GFR - estimated GFR
epsilon <- rnorm(n=length(eGFR),

mean = 0,
sd = sigma)

delta <- eGFR * (exp(epsilon) - 1)
mGFR <- delta + eGFR
#compute: median, IQR, P30, RMSE
return(c("median" = median(delta),

"IQR" = IQR(delta),
"P30" = 100*sum(abs(delta)/mGFR <= 0.3)/length(delta),

"RMSE" = sqrt(mean(epsilonˆ2))))

}

Now, find a value of sigma that simultaneously optimizes for median, IQR, P30, and RMSE.
Here is the function to be minimized.
It first calls function resid_draw() to draw a set of residuals for a sample of eGFR values (trying to
reproduce the development dataset), and compute the median, IQR, P30, and log-scale RMSE for that set
of residuals. Then, it computes and returns the square root of the sum of squared errors in median, IQR, P30,
and RMSE, compared to the values reported in Levey et al. (2009) Appendix Table 6 for the development
dataset. (In effect, this is the Euclidean distance from the reported values.)
This function draws 1000 different samples of eGFR values and draws a corresponding set of residuals for
each one, so it computes 1000 different sums of squared errors. It then returns the average of these sums of
squared errors. The idea is to average out variability that comes from randomly drawing eGFR values and
residuals.

#Here is the function to be minimized:
optim_fun <- function(sigma, nrep = 1000, N = 5504) {

#do 1000 replicates and average,
#to "average out" variability in the randomly sampled residuals
foo <- t(replicate(nrep,

{
#randomly draw values on unif(0,1)

N = 5504 in development dataset
rvals <- runif(N, min = 0, max=0.999)
#back-convert using inverse CDF
#into draws from the approximated eGFR distribution
eGFR_samp <- egfr_inv_cdf(y_spec = rvals,

x_in = egfr_pct$eGFR,
y_in = egfr_pct$pctile)

resid_stats <- resid_draw(sigma,
eGFR_samp)
}

))

sqrt(sum((colMeans(foo) - c("median" = 0.4,

5

"IQR" = 14.7,
"P30" = 85.6,
"RMSE" = 0.231))ˆ2))

}

Now, let’s do the optimization.

(optim_results <- optim(par = 0.2, #initial value for sigma
fn = optim_fun,
method = "L-BFGS-B",
lower = 1e-6,
upper = Inf))

$par
[1] 0.2061534
##
$value
[1] 0.4202734
##
$counts
function gradient
11 11
##
$convergence
[1] 0
##
$message
[1] "CONVERGENCE: REL_REDUCTION_OF_F <= FACTR*EPSMCH"

The best-fit sigma value is:

optim_results$par

[1] 0.2061534

What are the calculated residual stats for the selected sigma value, and how do they compare to the reported
values in Appendix Table 6?

resid_samp <- t(replicate(n = 1000,
expr = {

eGFR_samp <- egfr_inv_cdf(y_spec = rvals,
x_in = egfr_pct$eGFR,
y_in = egfr_pct$pctile)

resid_draw(sigma = optim_results$par,
eGFR = eGFR_samp)

}
)
)
resid_stats_avg <- apply(resid_samp, 2, mean)

reported_stats <- c("median" = 0.4,

6

"IQR" = 14.7,
"P30" = 85.6,
"RMSE" = 0.231)

df <- data.frame("Original" = reported_stats,
"Optimized" = resid_stats_avg,
check.names = FALSE)

knitr::kable(t(df), format.args = list(digits = 3))

median IQR P30 RMSE
Original 0.40000 14.7 85.6 0.231
Optimized 0.00656 14.9 85.7 0.206

References

• Levey AS, Stevens LA, Schmid CH, Zhang YL, Castro AF, 3rd, Feldman HI, et al. A new equation to
estimate glomerular filtration rate. Ann Intern Med. 2009;150(9):604-12.

• Levey AS, Titan SM, Powe NR, Coresh J, Inker LA. Kidney Disease, Race, and GFR Estimation. Clin
J Am Soc Nephrol. 2020;15(8):1203-12.

7

	Supplemental1 JESEE Revision Breen
	Supplemental1 Figures JESEE Revision Breen
	Supplemental2 JESEE Revision Breen
	References

