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Supplemental Information S1

S1.1. Appropriateness of SHEDS-HT to 1,4 Dioxane and General Applicability of 

Workflow to other Chemicals

1,4-Dioxane exposure was estimated through ingestion, inhalation, and dermal pathways 

in this study with SHEDS-HT. One issue of concern is the suitability of the SHEDS-HT 

exposure modules to 1,4 dioxane. SHEDS-HT was designed from the SHEDS “family” of 

exposure models to be applicable to a wide variety of chemicals, particularly chemicals 

contained in consumer products (see section S7 for greater detail). It’s exposure and absorption 

equations are generic (S2.2) and vary by pathway. However, most are mechanistic and utilize 

both physiological information, derived from model-based and empirical sources, and chemical 

properties, estimated from 5 sources: USEPA’s EPI Suite1, the OPERA suite of models2, a model 

predicting dermal permeability3 , and a model predicting the fraction absorbed in the gut 4. See 

Supplemental Information S2.1 for pathway-specific equations. In the sections below, we discuss 
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the general applicability of the methodology for each exposure route used by SHEDS-HT and 

compare the exposure conditions used here versus the US EPA(2020)5 in their Final Risk 

Evaluation for 1,4 Dioxane. Lastly, we discuss the general applicability of the workflow to other 

chemicals, 

S1.1.1. Ingestion 

The equations used in SHEDS-HT to estimate exposure via ingestion are similar to those 

used by the US EPA (2020)5. Where the EPA (2020) evaluation implicitly assumes 100% 

absorbance of 1,4-dioxane through the gut, SHEDS-HT uses a QSAR model to predict 

absorbance4. 1,4-Dioxane appears to be well within the domain of this model, with the prediction 

(97%) similar to that suggested by rat studies6. In our study, exposure from ingestion occurred 

through drinking water and hand-to-mouth transfer while US EPA (2020) only assumed 

incidental ingestion during swimming in surface waters near industrial release points. Thus, 

exposure conditions significant differed between the two studies, with the latter study focusing 

on high exposure scenarios.      

S1.1.2 Inhalation

SHEDS-HT uses a set of equations to model aggregate inhalation exposure from direct 

exposure to chemicals in products (See Supplemental S2.1) over a 1-day period. It combines 
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information on use factors (use duration, product mass, room size), chemical characteristics 

(vapor pressure), and physiological/activity characteristics (ventilation rate, physical activity) to 

stochastically calculate exposure. It currently employs a generic absorbance function that 

assumes (based on legacy reasons) a static 16% of exposed chemical absorbed through the lungs. 

Research into inhalation exposure of 1,4 dioxane suggests that absorption via inhalation may be 

closer to 50%7. However, in contrast to our study in which exposure is via 1,4 dioxane dissolved 

in products, Goen et al. (2016) 7 exposed humans to evaporated 1,4 dioxane within an 

environmental chamber. To evaluate the impact of this assumption, additional ad hoc simulations 

with an assumed fraction absorbed through inhalation set at 0.5 resulted were run, with all other 

settings the same as the full factorial simulations. These simulations resulted in increases in 

human exposures relative to the default SHEDS-HT inhalation boundary, ranging from 22-88% 

for the Both population, 167-440% for the Products-Only population, and 132-426 % for the 

Total population. It resulted in relatively small changes in the proportions attributable to water 

ingestion compared to the default value, ranging from differences of 5.6% to decreases of 27%, 

relative to the lower fraction absorbed through inhalation assumption. The biggest differences in 

the proportion of human exposure attributable to water ingestion occurred in people with surface 
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water and a low Prevalenceproducts assumption. This is because surface water had the lowest 1,4 

dioxane concentration, and thus would be more influenced by changes in product contributions 

to exposure. The two assumed fractions absorbed (16% & 50%) likely represent lower and upper 

bounds which require additional experimental work to clarify. See Supplemental Information 

2.10 for the outputs from these ad hoc simulations. 

The equations used in SHEDS-HT to estimate inhalation exposure are similar to those 

used by US EPA (2020)5 to calculate occupational exposure to 1,4-dioxane. In contrast, to 

estimate exposure from products US EPA(2020) used the Consumer Exposure Model (CEM)8, a 

deterministic mass-balance model, to calculates 8 hour time-weighted averages over a 72 hour 

exposure window for high and median intensity users. The exposure equations of this model are 

functionally similar to those employed in SHEDS-HT, but much greater detail is used in 

calculating exposure concentrations in different compartments of the interior space over time. 

SHEDS-HT does have a fugacity model built into its indirect inhalation exposure module with 

similar functionality. However, that module was not used here as the products considered are 

washed down the drain shortly after their use. Therefore, SHEDS-HT provides a more simplistic 

snapshot of inhalation exposure than the methods employed by US EPA (2020), but it provides a 
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distribution of aggregate estimates instead of point estimates of median to high exposures from 

each product.  

S1.1.3. Dermal exposure

 SHEDS-HT combines information on use factors (use duration, product mass) and 

chemical characteristics (dermal permeability, dermal absorbed fraction) to calculate dermal 

exposure, and accounts for the quantity of chemical removed through handwashing, bathing, 

wipe-off, and hand-to-mouth actions. The fraction of 1,4-dioxane exposure absorbed dermally 

may be relatively minor, with available studies limited to one involving excised human skin (0.3-

3.2%), and an in vivo study involving monkey skin (<4%). SHEDS-HT estimates dermal 

absorption by multiplying an absorbed fraction randomly sampled from a triangle distribution 

(0.001,0.01, 0.004) by the Kp of the chemical (scaled by the Kp for permethrin 9). Then, this 

value is multiplied by the amount of dermal exposure remaining after handwashing, bathing, 

being brushoff, and transferred hand to mouth. This results in a very low proportion of dermal 

exposure is estimated to be absorbed by SHEDS-HT (≈0.001%). However, the products included 

in our analyses are not intended to be left on the skin, as chemicals in the above experiments 

were. US EPA (2020) estimated exposure via a dermal pathway from swimming and product 

use. The underlying exposure equations used by US EPA(2020) to estimate dermal exposure 
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during swimming was similar to the approach used by SHEDS-HT, but the approach used to 

estimate dermal exposure through consumer product use utilized the mass-balance model of the 

CEM. This method entailed a more nuanced approach to fraction absorbed than utilized in 

SHEDS-HT. Therefore, as for inhalation above, SHEDS-HT provides a more simplistic snapshot 

of dermal exposure than US EPA (2020), but it provides a distribution of aggregate exposure 

estimates instead of a range of median to high point estimates from exposure to each product.  

Finally, SHEDS-HT does not consider dermal exposure from swimming at all.

S1.2 Data for exposure pathways

S1.2.1 Drinking Water Data

Parameters for the tap water pathway through ingestion included 1,4 dioxane 

concentration and prevalence of 1,4 dioxane contamination in tap water (prevalencewater), and the 

amount of tap water ingested. The parameters for mass released DTD from water included the 

average aggregate amount of tap water use per household. First, concentrations of 1,4 dioxane in 

drinking water were obtained from the UCMR310, collected from 2013-2015 at a subset of public 

drinking water systems across the United States. Prevalencewater by source (groundwater, surface, 

mixed) was determined on a population basis; that is, prevalencewater was defined as the 

proportion of the population served by systems where 1,4 dioxane was detected above the 
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minimum detection limit. Total populations served by water systems listed in the UCMR3 

sample were ascertained by linking this dataset with the USEPA Safe Drinking Water 

Information System (SDWIS) dataset by water system ID’s (i.e., PWSID). It is likely that non-

detects of 1,4 dioxane in UCMR3 samples do not equate to concentration = 0 (i.e., water not 

contaminated), but rather to some value less than the minimum detection level of the analytical 

method (0.02 ug/L11). However, to facilitate the comparison of different subpopulations based on 

exposure or not to contaminated water (see Section 2.5 for additional details), we assume here 

that a non-detect for water contamination is equal to 0 ug/L.  

Total water ingested included water consumed directly, as well as through drinking water 

incorporated into food. This information was derived from the NHANES What-We-Eat-in-

America (WWEIA)12 study conducted from 2009-2019. Food diaries were downloaded for each 

NHANES cycle (F-J). The data files contained recall diary information describing the foods and 

beverages consumed by study participants in all eating occasions in the 24-hour period (midnight 

to midnight) prior to the interview. Two separate days of recall data were reported for most 

individuals; data from the two days were treated as independent.  Total moisture WTot (in ml) in 

each food item consumed was reported in the file (as variables DR1IMOIS and DR2IMOIS for 
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day 1 and day 2 of the study, respectively).  A subset of NHANES food codes assumed to 

contain tap water were identified (including directly consumed tap water, packaged foods, and 

drinks prepared with tap water) by searching for the word “water” in the description, and 

manually verifying that the description described the addition of water to the food. Each of these 

foods were assigned a fraction f assumed equal to the fraction of total moisture in the food item 

that could be attributed to tap water. All foods not containing tap water were assigned f=0. This 

process was made according to empirical information when available, and otherwise used 

reasonable assumed values. Per capita daily tap water consumption (mL) was then calculated by 

multiplying the moisture content of the food type by the proportion of tap water for each food 

type and summing over all foods. This value was added to the total mL of direct drinking water 

consumption to obtain a value for the total drinking water consumed per day. This information 

was provided as a customized food diary input file to SHEDS-HT.  

Mass released DTD estimates from drinking water were made using gross per capita 

water usage data from the USGS13. Included implicitly were quantities for major contributing 

activities such as bathing, handwashing, dishes, and laundry. Per capita quantities of water 

ingested as drinking water based on NHANES data were a very small proportion of average 
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daily water usage in the US (<1%) and was not subtracted from the gross total considered for 

mass released DTD. Water used in outside applications such as lawn watering would not be 

expected to be captured by WWTPs. Though averaging nationally up to 30% of domestic water 

use14, lawn watering would be expected to be vary by factors beyond the granularity of this 

analysis, including regional variation15 and whether people are homeowners are renters. Thus, 

we ignore the influence of lawn watering on down the drain calculations here. 

S1.2.2 Consumer Product Data

For human exposure from product use, we considered six product classes: shampoo, body 

wash, hand soap, laundry detergent, manual dish detergent, and bubble bath. Concentrations of 

1,4 dioxane in these consumer products were estimated from three different sources, including a 

primary literature source16, and two consumer advocacy organizations17, 18. The product classes 

selected for inclusion here were those that were identified by these sources as consistently having 

detectable levels of 1,4 dioxane. In contrast, products such as hair conditioner and lotions were 

generally not found to contain 1,4 dioxane. In all cases, concentration of 1,4 dioxane in samples 

of consumer products was estimated using Gas Chromatography with Mass Spectrometry 

(GC/MS). In the case of two sources (Zhou et al. (2019), Sarantis et al.(2009) 17, 18), independent 
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laboratories provided blind analytical determination of samples (using Method 8260C or 

similar). See Supplemental Information (S2.1) to see the assembled consumer product data. 

 As required by SHEDS-HT, mean 1,4 dioxane concentrations (listed in ug/L) per 

product category of interest were converted to weight fractions, and coefficients of variation 

were calculated. We explicitly considered a range of values for chemical prevalence in products 

(Prevalenceproducts) as part of our factorial analyses; see section 2.4.1 below for more details. 

Product usage parameters (frequency of use, prevalence of use, duration of use, etc.) utilized 

included either default values in SHEDS-HT (which include a mix of primary literature and 

reported values), or they were from the Exposure Factors Handbook19. Please see the 

Supplemental Information (S3) for a listing of sources for each parameter.    

S1.3. Modifications to Default SHEDS-HT

Three main adjustments were made to the default SHEDS-HT coding of the dermal and 

DTD modules to improve realism and better match the assumptions exposure scenarios. First, we 

linked the exposure and DTD processes to ensure that the concentrations of 1,4 dioxane in 

drinking water exposures for a particular person matched those used in making mass released 

DTD estimates for that person. Next, by default SHEDS-HT selects the frequency of 
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handwashing and bathing, which reduce exposure to chemicals via the dermal pathway, 

independently of product use for a person.  However, some of the products considered here are 

associated with handwashing (i.e., hand- soap) and bathing (i.e., shampoo, bubble bath, 

bodywash). To accommodate this connection, we set the number of handwashing events to be at 

least as many as uses of hand-soap, and the number of bathing events to be at least as many as 

the usage events of shampoo, bubble bath or body wash. In this way, a person could wash their 

hands and/or bath without using the corresponding product, but not the converse. 

Lastly, by default SHEDS-HT assumes independence in the probabilities of using each 

product. This independence is useful in a high throughput scenario with multiple chemicals and 

products, and when conservative estimates of aggregate chemical exposures are desired.  

However, when a subset of specific products is utilized, it can result in unlikely scenarios that 

overestimate product use and exposure. For example, a person could be assigned to use multiple 

kinds of laundry detergent (gel, liquid, other) or shampoo on the same day. To  more realistically 

estimate product use, similar product types (e.g., dish detergent, laundry detergent, shampoo) 

were clustered, creating simple dependence between types. This was done by considering two 

scenarios. In the first, multiple subtypes of a product (e.g., laundry detergent(e.g., powder vs 



S1, 13

liquid) exist, but only one of these is likely to be used by a person in day. In this case, a single 

subtype is first selected for a given person based on assigned weight. Then, a Bernoulli trial is 

run to determine whether or not the person uses the product on the day. Because we did not have 

market penetration information, all such subtypes were equally weighted (e.g., selection 

probability for 1 of 3 subtypes =0.333).  As a result, the product use prevalence parameter in this 

situation is considered the probability of using a product subtype given that a product type is 

selected. 

In the second scenario, one or more of the product types is considered a sub-product of 

another. For example, shampoo may be classified as just “shampoo” or “dandruff shampoo”. So, 

dandruff shampoo is a subset of shampoo of the overall product type. However, while 100% of 

people are assumed to use shampoo, only about 10% of people are assumed to use dandruff 

shampoo, and it is unlikely that people would use both dandruff and non-dandruff shampoo on 

the same day.  To handle this situation, the use of the overall product (e.g., shampoo) on a given 

day is assigned first. Then, the proportion of people using the subtype on that day are assigned 

from the people assigned to use the general type. 
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S1.4. SHEDS-HT Parameter Estimation. 

SHEDS-HT uses a Monte Carlo approach to assign parameter values determining 

exposure estimates. This is accomplished by sampling from distributions based on user-input 

arithmetic means and coefficient of variations (CV) for each parameter. SHEDS-HT currently 

allows the user to specify one of 3 distribution types for each parameter, including the normal, 

lognormal, and Bernoulli distributions. The lognormal distribution is commonly used in 

exposure research and, like the normal distribution, tends to be appropriate when looking at the 

distributions of many independent observations. Bernoulli distributions are utilized for point 

estimates and represent parameters for which there is limited knowledge of uncertainty. To 

choose whether normal or lognormal distributions were more appropriate for parameters for 

which a collection of data points existed, we used the fitdistrplus package20 in R to fit data to 

those distributions. We then calculated the Akaike Information Criterion (AIC) value for each fit, 

and chose the distribution for the lower of the two fits for each parameter. The distribution 

assigned to is listed in the Supplemental Information (S3). 
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S1.5. Estimating prevalence of 1,4 Dioxane from list of proxy ethoxylated chemicals

One of the 3 factors we used in the analyses was prevalenceproducts, the prevalence of 1,4 

dioxane in different consumer product classes. SHEDS-HT expects a point estimate for 

prevalence that it uses as a probability in a Bernoulli trial to determine if a chemical is present in 

a product. However, there is inherent uncertainty in determining prevalenceproducts, as it depends 

upon the specific products in each product class considered, as well as the market penetration of 

those products. We explicitly accounted for this uncertainty by using a low-high bounding 

approach. In the consumer advocacy studies of 1,4 dioxane in consumer products used here to 

estimate concentrations of 1,4 dioxane in product classes17, 18, the prevalenceproducts within 

samples may be biased high because the organizations conducting that research may have been 

seeking products with ethoxylated ingredients. Thus, the prevalence information from these 

sources served as a high bounding estimate. This was calculated as the number of products in a 

given class (e.g., shampoo) with 1,4 dioxane detections, divided by the total number of products 

sampled in that class. See Supplemental Information (S2.1) for assembled consumer product 

concentrations used in this calculation.     

To determine a lower bound of prevalenceproducts, we assembled a list of ethoxylated 

chemicals expected to be found in consumer products, cross-referenced the list with a consumer 
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product database, and then calculated a prevalenceproducts based on the proportion of products 

found in each product class containing at least chemical from the proxy list. To start this process, 

we first assembled a list of 335 ethoxylated chemicals from two sources: the Mintel Database,21 

and the American Cleaning Institute’s Cleaning Product Ingredient Inventory.22 Ethoxylated 

chemical ingredients in the list were exported as a search list from Mintel, and then identified in 

the ACI Cleaning Product Ingredient Inventory by expert chemist review. Next, we cross 

referenced the CAS Registry Numbers (CASRN) and common names of the chemicals on the list 

to chemical DTXSIDs listed on the USEPA Comptox Dashboard,23 where possible. Of the 335 

chemical names checked in this manner, 116 unique chemicals were recognized by the 

dashboard. For each chemical a list of synonyms used in ingredient descriptions was identified 

using the CompTox Dashboard. Next, we cross-referenced the list of synonyms with products (in 

the product classes of interest) downloaded from the EPA Chemical and Products database24 

(CPDat), a database of consumer products and their ingredients constructed from information 

made available on MSDS sheets. Lower bound prevalenceproducts calculations (See 

Supplementary Information (S2.3)) were then made by determining the proportion number of 

chemicals in each product class containing at least one of the chemicals in the chemical proxy 

list. For example, if 10 of 20 products in a product class contained at least 1 of the chemicals, the 



S1, 17

prevalenceproducts would be considered 0.5. In the case where the lower bounding estimate 

exceeded the high bounding estimate (in the case of laundry detergent), the highest available 

prevalence value was used for both. 

S1.6. Projecting down-the-drain exposure to wastewater concentrations

To translate down-the-drain (DTD) exposure predictions from SHEDS-HT to expected 

wastewater loading, we used the web-based ISTREEM tool25. This freely available tool is 

currently hosted by the American Cleaning Institute and predicts concentrations of chemicals at 

WWTPs (influent and effluent) and drinking water intakes across the US as a function of user-

specified per capita DTD concentrations.  Using this tool, we predicted expected concentrations 

(µg/L) of dioxane in wastewater effluent at 142 WWTPs in CA (reported to serve 1,422,830 

people) and 13,245 WWTPs in the US (reported to serve 18,2615,938 people) overall. This 

accounts for 36% and 55% of the populations of the US and CA, respectively. Though advanced 

methods have been developed to reduce dioxane in some circumstances and localities26, standard 

wastewater treatment does not appreciably reduce dioxane concentration27. So, only a single 

concentration influent/effluent (WWconc) was calculated per plant using the following equation:

𝑊𝑊𝑐𝑜𝑛𝑐 = (
𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑆𝑒𝑟𝑣𝑒𝑑 ∗  𝐷𝑇𝐷𝑔

𝑑𝑎𝑦 

𝐹𝑙𝑜𝑤𝑅𝑎𝑡𝑒𝑀𝐺𝐷 ∗ 3785411.8𝐿𝑃𝐷
𝑀𝐺𝐷

) ∗ 1𝑥106𝜇𝑔
𝑔
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 Is this equation, PopulationServed and FlowRateMGD are the total population and flow rate (in 

millions of gallons per day), respectively, for a given wastewater system as indicated by 

ISTREEM. DTDg/day is the mean DTD estimate for a factorial combination of scale, water 

source,  and prevalenceproducts . The two constants convert flow rate in MGD to liters per day and 

dioxane concentrations from g/l to ug/l. Finally, we compared the predicted means and 95% 

effluent concentrations for each factorial combination to the corresponding US or CA-scale 

WWTP dioxane concentrations.   

S1.7 General applicability of workflow

The work developed to carry out the described analysis of this study consists of several 

R-scripts, a single “master” MS Excel workbook containing all of the input files needed to run 

SHEDS-HT, and a version of the SHEDS-HT R package with study-specific modifications (see 

S1.5). This workflow (available on GitHub) is contained within a folder with nested directories, 

making the results of this study straightforward to replicate and modify. In addition, the master 

input file makes it relatively straight-forward to modify simulation parameterizations for 

additional modeling scenarios. In contrast, the manual assembly of data is not easily replicable. 
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A workflow situated within an integrative data environment, such as a bridged life cycle 

analysis-exposure ontological framework28, 29 that utilizes exposure and life-cycle databases, 

would be ostensibly faster and easier to implement. Thus, it may be desirable for future iterations 

or versions of this workflow to utilize such an approach to data assembly.    

For other chemical classes of interest, pathway specific absorption may be insufficiently 

captured by the current version of SHEDS-HT, either due to inaccurate chemical properties 

information, or insufficiently complex exposure/absorption relationships. In an example of the 

former, chemicals with amphiphilic properties (e.g. PFAS) may lie outside the applicability 

domain of the model predicting ingestion fraction4, making absorption predictions unreliable. In 

an example of the latter, absorption of chemicals that rely upon transporters (e.g., many 

pharmaceuticals) also may be misestimated. However, because SHEDS-HT models exposure 

through mechanistic equations (S2.1), exposure estimates could be coupled with more chemical 

or chemical-class specific absorption functions post-hoc. This would allow for the bulk of the 

workflow to be retained, and thus generally useful for a variety of exposure scenarios. In 

addition, for functions such as the inhalation absorption fraction, the single assumed value could 

be replaced with values predicted from QSAR or read-across methods.   
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Additional Material: 

The portable workflow for this project is freely available at BitBucket at:

https://bitbucket.org/DanielDawsonEPA/dioxane_portable_exposure_workflow/src/master/
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