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1.0 Estimating Chemical-Specific Response Factors from Log-Log Regression Parameter Estimates

We start with the conventional equation of a straight line for intensity () versus concentration ():
 											
Where is the known concentration of a target compound in prepared solution,  is the observed instrument intensity,   is the regression slope, and  is the regression y-intercept.
Logarithmic transformation of concentration and intensity values is performed prior to linear regression (to satisfy regression assumptions), where  and  are the slope and y-intercept, respectively:
 									   
Under the condition of proportionality (i.e., a proportional increase in  following an increase in ), in log space, . Solving for  when  yields:
 								   
Exponentiation of all terms ultimately yields the compound-specific response factor:
 							
Thus, for the cases where , the  can be obtained from the intercept of a log-log regression after exponentiation.


2.0 Generating MS-Ready Structures for DSSTox Substances

The reference to “MS-Ready structures” relates to a specific form of chemical structure representation utilized to support mass spectral analyses (1). These MS-Ready forms establish structure-based relationships to the original source substances contained within the DSSTox database underpinning the CompTox Chemicals Dashboard. All chemical structures registered in the database are processed in order to map a desalted, de-isotoped, stereo-agnostic, single component form of a chemical to its parent substances (see Figure 1 in Schymanski and Williams (2)). MS-Ready structures are visible as linked substances on the Dashboard as exemplified by the linkages to mixtures, components and isotopomers for Atrazine (i.e., https://comptox.epa.gov/dashboard/msready-mixture?dtxcid=DTXCID90112). The utility of MS-Ready structures to aid NTA studies has been previously demonstrated (e.g., McEachran et al. (3)). MS-Ready structures are available for bulk download for inclusion in other public domain databases and resources (https://epa.figshare.com/articles/dataset/DSSTox_MS_Ready_Mapping_File_11_14_2016/5588575).


3.0 Within- and Between-Batch Correction of Measured Feature Intensities Using Stable Isotope-Labeled Tracer Compounds

ENTACT mixtures (n=10; labeled ‘499’ through ‘508’) were examined at three nominal concentrations (‘Low’, ‘Mid’, and ‘High’; see Tables S1 and S2 for exact concentrations), with triplicate HRMS analyses performed on each sample (here, a “sample” refers to a unique ENTACT mixture at a specific concentration [e.g., “499_High”]). All HRMS analyses of a common ENTACT mixture, regardless of concentration, occurred within a single analytical batch. Injections were not randomized, but rather ordered from ‘Low’ to ‘Mid’ to ‘High’ to minimize carryover (which was monitored using methods blanks). Stable isotope-labeled tracer compounds were included in each sample and blank to track performance (e.g., mass accuray, retention time [RT] deviation, and measurement [peak intensity] precision) within and between batches. Three tracer compounds were examined in ESI+ mode (Figure S1) and eight in ESI- mode (Figure S2). A custom script was used to calculate the average intensity of each tracer across sample replicates (full tracer results are given in Sobus et al. (4)). Average tracer intensities for each ENTACT sample are shown in Figures S1 (for ESI+ data) and S2 (for ESI- data). 

Tracer results for ESI+ mode (Figure S1) show clear effects of concentration and mixture ID on measured intensity, with effects most pronounced for D3-Thiamethoxam (RT = 0.85 min). For each tracer, the ‘High’ concentration samples yielded lower intensity values; this was especially apparent for mixtures 505, 506, and 508, which had the highest number of spiked substances (n=365 vs. 95 or 185 for all other mixtures). Taken together, these effects suggest modest detector saturation in ESI+ mode under certain experimental conditions. They further highlight a need for within-batch (i.e., concentration-dependent) and between-batch (i.e., mixture-dependent) intensity correction prior to quantitative analysis. 

Tracer results for ESI- mode (Figure S2) were extremely consistent across compounds, with no observable concentration effect, but a clear mixture ID effect. Specifically, for all eight tracers, the highest intensity values were observed for mixtures 501, 502, and 505, regardless of the nominal concentration. These results highlight a need for intensity correction between batches, but not necessarily within batches. 

For consistency across ionization modes, within- and between-batch corrections were applied to all analytes considered for quantitative analysis. First, a sample-specific mean tracer level was estimated for each ENTACT mixture (Figure S3). As an example, in ESI- mode, for ENTACT mixture 499, at the ‘High’ concentration, the calculated mean was the average of eight unique tracer measures. Next, a “global mean” was calculated across all 30 sample-specific mean tracer levels (Figure S3). A unique correction factor was then calculated for all 30 samples (i.e., three nominal concentrations of ten ENTACT mixtures). Here, each correction factor was equal to the global mean divided by the sample-specific mean. For each analyte considered for quantitative analysis, the final corrected intensity was the product of the measured intensity (arithmetic mean of three replicates) and the sample-specific correction factor. 
























Figure S1. Intensity measures of ESI+ mode stable isotope-labeled tracer compounds (n=3) across ten ENTACT mixtures. Each ENTACT mixture was analyzed at nominal ‘Low’, ‘Mid’, and ‘High’ concentrations. Individual point values in each plot represent the arithmetic mean of intensity measures across triplicate injections of each mixture at each concentration.
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Figure S2. Intensity measures of ESI- mode stable isotope-labeled tracer compounds (n=8) across ten ENTACT mixtures. Each ENTACT mixture was analyzed at nominal ‘Low’, ‘Mid’, and ‘High’ concentrations. Individual point values in each plot represent the arithmetic mean of intensity measures across triplicate injections of each mixture at each concentration. 















Figure S3. Mean intensity levels of ESI+ (left) and ESI- (right) mode stable isotope-labeled tracer compounds across ten ENTACT mixtures. Each ENTACT mixture was analyzed at nominal ‘Low’, ‘Mid’, and ‘High’ concentrations. Individual point values in each plot represent the arithmetic mean intensities across multiple tracer compounds (shown in Figures S1 and S2). The dashed line in each plot represents the global arithmetic mean across all tracers, at all nominal concentrations, of all ENTACT mixtures. 



4.0 Comparative Analysis of Chemicals in ENTACT and Ionization Efficiency Model Training Sets
Clearly defining a model’s applicability domain is among the guiding principles set forth in the OECD’s document on best practices for QSAR modeling https://www.oecd.org/officialdocuments/publicdisplaydocumentpdf/?doclanguage=en&cote=env/jm/mono(2007)2). Briefly, models should not produce predictions for chemicals that are dissimilar to those found in the model’s training set. To explore the similarity of the ENTACT ESI+ and ESI- datasets with the respective IE model data, PaDEL descriptors were calculated for each compound in the datasets and the top 11 descriptors from each IE random forest model (descriptors describing the solvent system for each IE model were not considered here) were selected for principal component analysis. The factoextra package (http://www.sthda.com/english/rpkgs/factoextra) in the R language was used to calculate and plot the first two principal components for the ENTACT and IE model data. 
Plots of the first two principal components of the ESI+ and ESI- datasets are shown in Figures S4 and S5, respectively. The amount of variability accounted for by the first two principal components is similar for both models (75.9% for the ESI+ model versus 83% for the ESI- model). Yet, there is considerable overlap across the two ESI+ datasets (Figure S4) and noticeable disparity (based on the overlap of data ellipses) across the two ESI- datasets (Figure S5). We note that high similarity of molecular descriptors between datasets (as seen with ESI+ data in Figure S4) does not necessarily imply that all analytes are within the model’s applicability domain. Lower similarity, however (as seen with ESI- data in Figure S5) can be considered evidence that some compounds are outside of the model’s applicability domain. For the ESI- model, poorer performance (compared to that of the ESI+ model) may be expected given the lower similarity between ENTACT chemicals and those used for IE model training.
[image: Chart, scatter chart

Description automatically generated]
Figure S4. PCA plot (first two principal components) for chemical compounds in the ENTACT and ionization efficiency (IE) model ESI+ datasets based on the top 11 PaDEL descriptors used in the ESI+ IE model. Out of 530 unique MS-Ready structures in the ENTACT ESI+ dataset, 121 were also in the IE model ESI+ dataset.
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Figure S5. PCA plot (first two principal components) for chemical compounds in the ENTACT and ionization efficiency (IE) model ESI- datasets based on the top 11 PaDEL descriptors used in the ESI- IE model. Out of 237 unique MS-Ready structures in the ENTACT ESI- dataset, 10 were also in the IE model ESI- dataset
5.0 Linear Mixed-Effects Modeling Bootstrap Procedures

All linear mixed-effects models considered in this analysis are of the form:

                                                                                                       Eq. 1

where 
·  is the global model intercept
· is the linear coefficient for the fixed effect of  (the logarithmic IE estimate for the th chemical)
·  is the random effect for the th chemical
· and  is the residual error for the th RF measurement of the th chemical. 

The model assumes that:
·  is a random variable normally distributed with a mean of 0 and variance of  (between-chemical variance)
·  is a random variable normally distributed with mean of 0 and variance of  (within-chemical variance).
·  and  are independent

Within each of the five training sets for cross validation,
· Chemicals are indexed  = 1, 2, … 
· RF measurements for chemical i are indexed  = 1, 2, …  
· Individual observations are indexed= 1, 2, …  where  is the total number of RF measurements.

Note that each cross-validation training data set contains only a subset of chemicals present in the full data set. For each training data set, there will be chemical-specific values for , estimated for only the chemicals present in the training data set. However, there will also be an estimate of  (between-chemical variance), because the overall distribution of random effects is assumed to apply even for new chemicals not present in the training data set. Therefore, in order to make predictions for chemicals not present in the training data set, it is necessary to use  to randomly sample new values of  for these “new” chemicals.

[bookmark: _Hlk94253131]The goal of bootstrap analysis is to estimate a prediction interval around the predictions of the linear mixed-effects model. This prediction interval includes uncertainty in the maximum-likelihood estimates of the fixed effects  and ; between-chemical variability represented by  (the estimated variance of the random effects ); and residual variability represented by  (the estimated variance of the residual errors ).

Bootstrap analysis of the linear mixed-effects models was accomplished using the function bootMer() from the lme4 R package. (5) bootMer() was used to perform parametric bootstrapping, which is different from standard bootstrapping. 
In standard bootstrap analysis, the procedure is as follows:
1. Resample the original dataset with replacement to generate a bootstrap sample.
2. Fit the model to the bootstrap sample.
3. Calculate and record the statistic(s) of interest from the fitted model (e.g., the fitted model coefficients; the confidence or prediction interval bounds).
4. Repeat steps 1-3 for a large number of bootstrap samples, say 10,000.
5. Calculate sample statistics on the resulting sample of fitted model statistics from step 3.
In parametric bootstrap analysis, by contrast, the procedure is as follows:
1. Fit the model to the original dataset. The model fit includes the following:
a. The best-fit model coefficients. 
b. An estimate of the residual error distribution
c. For linear mixed effects models, an estimate of the random effect distribution (here, the distribution of chemical-specific random deviations in the intercept).
2. Use the fitted model from step 1 to simulate new values of the response variable for each value of the predictor variable in the original dataset. This set of simulated values constitutes the bootstrap sample.
a. Use the best-fit model coefficients from step 1a to make the best-fit prediction for each value of the predictor variable.
b. Randomly sample residual errors from the distribution estimated in step 1b.
c. For linear mixed-effects models, randomly sample random-effect values from the distribution estimated in step 1c.
d. Add the sampled residual errors from step 2b and random effects from step 2c to the best-fit predictions to produce the simulated values, the bootstrap sample.
3. Fit a new model to the bootstrap sample.
4. Calculate and record the statistic(s) of interest from the fitted model.
5. Repeat steps 2-4 for a large number of bootstrap samples, say 10,000.
6. Calculate sample statistics on the resulting sample of fitted model statistics from step 5.
All of the steps of parametric bootstrap analysis are handled internally by the function bootMer().
For the analysis presented here, the specifics of the parametric bootstrap analysis are detailed below.

Stepwise Description of Mixed Modeling Bootstrap Procedures:

Refer to the Supplemental Files “RMarkdown.rmd” and “RMarkdown.pdf” for the qNTA R script and R output, respectively.

Each of ESI+ and ESI- data undergoes a five-fold cross-validation process, meaning that there are five different ESI+ training/test set pairs and five different ESI- training/test set pairs. The below process is applied to each training/test set pair.

Each training set consists of N paired values of  and .

For each training/test set pair:

Step 1: Fit the model (Eq. 1) to the training set. Estimate model parameters , , , and . The best-fit values are denoted ,  and .
Then, repeat the following for K = 10,000 bootstrap iterations, using the function bootMer():
Step 2: Use the model fitted in Step 1 to simulate N values of  (labeled ).
Step 2a: First use the best-fit regression parameters to get the best-fit predicted values for each  value in the training set: = 	
Step 2b: Sample N values for  from a zero-mean normal distribution with variance  
Step 2c: Sample N values for  from a zero-mean normal distribution with variance . In effect, this step generates random-effect values for a set of hypothetical new chemicals.
Step 2d: Calculate the simulated values 
Step 3: Regress  on . Record the fitted model parameter estimates for the kth bootstrap iteration as  ,  , , and .
Step 4: Calculate the best-fit model-predicted values for the kth bootstrap iteration as  . Note that these best-fit model-predicted values do not include residual error and do not sample new values for  from the estimated random-effects distribution. Therefore, best-fit model-predicted value will be the same for all observations within a chemical.
Step 5: Arrange all  in a 10,000 × N matrix, as follows:
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Step 6: For each of the N columns in the  results matrix, determine the 2.5th and 97.5th percentiles, using the default quantile() function in base R. The result is two vectors, each of length N:  and . These approximate the lower and upper bounds of the 95% prediction interval (PI) for the linear mixed-effects model fit to the training data set in Step 1.
Step 7:  To approximate linear relationships between  and the lower and upper bounds of the 95% PI, fit ordinary least-squares (not mixed-effects) linear regression models to  and :  and . 
Step 8: Calculate the best-fit predictions for  and  for each  value in the test set. These constitute the lower and upper 95% PI bounds. 
Step 9: Calculate the percentage of  values above the upper 95% PI bound and below the lower 95% PI bound. These are the exceedance percentages. Ideally, both of these exceedance percentages would be 2.5%. 


[bookmark: _Hlk94864112]6.0 Results Associated with Methods for Concentration Estimation
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Figure S6. Distributions of estimated slopes from chemical-specific calibration curves employing linear regression of log10(Intensity) on log10(Concentration).
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Figure S7. Histogram comparison of training and test set response factor distributions from the five-fold cross validation experiments using ENTACT ESI+ data. 

[image: ]

Figure S8. Histogram comparison of training and test set response factor distributions from the five-fold cross validation experiments using ENTACT ESI- data. 
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Figure S9. Normal quantile-quantile (QQ) plots of (A) the observed ESI+ response factor (RF) distribution calculated as the ratio of intensity/concentration for each measure of each chemical, (B) Box-Cox transformed RF distribution, (C) marginal residuals resulting from the linear regression of Box-Cox transformed RF on log10 predicted ionization efficiency (IE), and (D) conditional residuals resulting from the linear mixed-effects model regression of Box-Cox transformed RF on log10 predicted IE. All Box-Cox transforms were performed using an optimum l of 0.285, as derived from bootstrap resampling and transforming the univariate RF distribution 50,000 times. For the purposes of this evaluation, the Box-Cox-transformed data are shown to reasonably approximate a normal distribution (as indicated by the red diagonal lines). 


[image: ]A
B
C
D


Figure S10. Normal quantile-quantile (QQ) plots of (A) the observed ESI- response factor (RF) distribution calculated as the ratio of intensity/concentration for each measure of each chemical, (B) Box-Cox transformed RF distribution, (C) marginal residuals resulting from the linear regression of Box-Cox transformed RF on log10 predicted ionization efficiency (IE), and (D) conditional residuals resulting from the linear mixed-effects model regression of Box-Cox transformed RF on log10 predicted IE. All Box-Cox transforms were performed using an optimum l of -0.106, as derived from bootstrap resampling and transforming the univariate RF distribution 50,000 times. For the purposes of this evaluation, the Box-Cox-transformed data are shown to reasonably approximate a normal distribution (as indicated by the red diagonal lines). 
[image: ]

Figure S11. Linear mixed-effects model regressions of Box-Cox-transformed response factors (RF) on log-transformed predicted ionization efficiencies for ENTACT chemicals measures in ESI- mode. The blue line represents the least squares regression line from the mean bootstrap coefficients, and the region within the black lines represents the approximate 95% prediction interval about the regression line. Each figure panel shows the annotated percentage of data outside of the prediction interval bounds for a specific CV fold. The final plot shows the regression line and approximate 95% prediction interval for the full ESI- dataset (Box-Cox lambda = -0.106).



[bookmark: OLE_LINK2]Figure S12. Error quotients associated with individual values of , , and  for ENTACT ESI+ data. Red error bars denote the interquartile ranges (IQR) and the center red lines denote the medians. The distribution of error quotients resulting from  is right-skewed with a median of 1.8 and an IQR of 0.9 (25th percentile = 1.5; 75th percentile = 2.4). Both qNTA approaches exhibit left skewness in their error distribution.  yielded a median error quotient of 36.8 and an IQR of 52.2 (25th percentile = 14.6; 75th percentile = 66.8). The distribution of  contained 60 imputations of  out of 1940 estimates, which yielded a median error quotient of 10.2 and an IQR of 16.3 (25th percentile = 5; 75th percentile = 21.3). Three extreme outlier error quotients are not pictured ( = 1.62x108, 2.30x108, and 4.25x1020), resulting from inverse predictions on three of the six data points for 1,3-diphenylguanidine (Table S1).
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Figure S13. Calibration curve (blue lines) and prediction interval (gray ribbons) for 1,3-Diphenylguanidine (left) and Tris(1,3-dichloro-2-propyl) phosphate (right), as measured in ESI+ and ESI- mode, respectively. These chemicals yielded the largest prediction errors across all analytes detected in multiple ENTACT mixtures.
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Figure S14. Depiction of default response factor (RF) imputations based on  vs.  regressions. Given a lower prediction interval (solid black line) for the linear mixed effects models, if a given value of  would yield a lower-bound  less than  (dashed black line), then the value  is imputed. The subset of measured values for which imputations were used is shown as red filled circles, comprising 60/1940 (3.09%) of the ESI+ data points. No imputations were made for the ESI- data.  



[bookmark: OLE_LINK3]Figure S15. Cumulative percentile plots for error quotients based on three concentration estimation methods (ESI- data).  represents the upper-bound concentration prediction using chemical-specific calibration curves.  represents the upper-bound concentration prediction using the Bounded Response Factor method.  represents the upper-bound concentration prediction using the Ionization Efficiency Estimation method. represents the true (known) analyte concentration.




[bookmark: _Hlk81220345]Figure S16. Error quotients associated with individual values of , , and   for ENTACT ESI- data. Red error bars denote the interquartile ranges (IQR) and the center red lines denote the medians. The distribution of error quotients resulting from  has a median of 2.3 and an IQR of 1.2 (25th percentile = 1.7; 75th percentile = 2.9). The distribution of error quotients for  yielded a median error quotient of 10 and an IQR of 19.8 (25th percentile = 4.6; 75th percentile = 24.4). The distribution of error quotients for  contained no imputations of  out of 691 estimates, yielding a median error quotient of 10.2 and an IQR of 20.3 (approx. 4.5 – 24.8).
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