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S1. ToxValDB

EPA ToxValDB database which is a compilation of data from 39 distinct sources including US Federal and State agencies including but not limited to the US EPA, US Food and Drug Administration (FDA), and California EPA, COSMOS, World Health Organisation (WHO), European Chemicals Agency (ECHA). Most of these sources have data compiled from primary literature, regulatory toxicology study submissions or results of government studies (e.g. NTP). ToxValDB is available via two routes. The first is the through the CompTox Chemicals Dashboard (https://comptox.epa.gov/dashboard). One searches by chemical and at the chemical specific page, ToxValDB data is viewed in the Hazard tab. Alternatively, an extract of the database is available from ftp://newftp.epa.gov/COMPTOX/STAFF/rjudson/datasets/ToxValDB/.

The database is created through the following steps:
1. Data from each source is downloaded in various forms, most typically either spreadsheets, database files, or via chemical-specific web services
2. Each data set is inserted into database tables in a MySQL database called toxval_source. The columns in these tables match the variable names in the source database.
3. Each data set is then copied to the MySQL toxvaldb schema where column names in the original data set are mapped to common columns in the toxvaldb tables. In particular, all chemicals are mapped to the source_chemical table, which contains columns for the chemical name and CASRN. All chemicals are assigned values of the DSSTox generic substance ID (dtxsid) based on the CASRN value. This is then used as the primary chemical identifier and links chemicals to the DSSTox database underlying the CompTox Chemicals Dashboard. 
4. Most values in the source tables are mapped to the toxval table, which contains one row per chemical-study pair. Most values are plated into columns named “value type”_original. This is done to handle variant terminology and units from the different sources. Once all sources are loaded into this table, the original values are mapped to final values using a series of dictionaries. Key variables subject to this mapping are
a. toxval_type – This is the type of dose metric used, e.g. NOEL, LOEL, BMD
b. toxval_numeric_qualifier – A qualifier on the numeric value, e.g. =, > <
c. toxval_numeric – The numeric value of the dose metric
d. toxval_units – The units of the dose metric, e.g. mg/kg/day, mg/m3
e. study_type – The type of study
f. study_duration_class – The class of study. Some sources use study type and some study duration class
g. study_duration_value – The length of the study
h. study_duration_units – The units of the study, e.g. days, months, generation
i. species – The species. This can be a common or scientific name. The final mapping leaves a standardized common species name in the toxval table.
j. strain – The strain of the test animals
k. sex – the sex of the test animals
l. exposure_route – The exposure route, e.g. oral, inhalation.
m. sxposure_method – The exposure method, e.g. feed, gavage
n. exposure_form – Most often used for inhalation studies, with values such as gas, aerosol, dust.
5. Where it is available, references for the records are placed into the record_source table with contains journal or gray literature citations, and information on the use of guidelines or other quality metrics. 
6. When available, critical effects are placed into the critical_effects table, with one or more critical effects per study. 
7. Toxval contains not only values from individual studies, but also chemical-level risk assessment values such as reference doses and screening levels. For reference dose values, the corresponding uncertainty factors and critical studies are included in the toxval_uf table.
Records are accepted as is from the sources, i.e. we do not curate the conclusions of individual studies that have been compiled by the source compilers. In the future, we plan to develop a process to manually check the values in the database against the original source documents. To enable that process, all source documents that are publicly accessible are being downloaded and stored.
S2. Machine learning algorithms

A brief description of the machine learning algorithms used to train the QSAR models along with the hyperparameters tuned for each algorithm are given below:
1. kNN is an instance-based lazy learning classification and regression algorithm. In kNN, a prediction for an unknown instance is derived from the known values of its k nearest neighbors. The neighbors are selected from the entire training dataset using a distance (similarity) function. The predicted class or value is either a majority vote or a distance-weighted vote from all the neighbors [1, 2]. The hyper-parameters for the kNN model optimized in this work are: number of nearest neighbors (values: 3, 4 and 5), weight function used in prediction (values: uniform and distance), and the algorithm used to compute nearest neighbors (values: auto, ball tree, kd tree, and brute).
2. SVM is a non-parametric machine learning algorithm that calculates an optimal hyperplane in a high-dimensional space that can be used for classification and regression problems. In case of non-linear relationships, kernel functions are used to map the non-linear relationships in a higher dimension. The distance of the training data from the hyperplanes or margin of tolerance (cost function) is minimized to determine the optimal hyperplane that separates the training instances [3, 4]. The hyper-parameters for the SVM model optimized in this work are: kernel function (values: linear and rbf), penalty parameter C (values: 0.1, 1 and 10), kernel coefficient for rbf, poly and sigmoid kernels (values: 0.01, 0.1 and 1) and no penalty prediction distance epsilon (values: 0.1 and 1).
3. RF is an example of ensemble machine learning methods, which constructs modified bagging ensembles of random decision trees for classification and regression problems. Each tree gives a predicted response for an instance and the final predicted response is the consensus or an average prediction from all the trees in the ensemble [5, 6]. The hyper-parameters for the RF model optimized in this work are: number of trees in the forest (values: 100, 250, 500, 500, 750, 1000, 1250 and 1500) and number of features to consider when looking for the best split (values: auto and sqrt).
4. GBR is an ensemble of weak learning algorithms. In context of decision trees, a weak learner/model is a small/shallow tree. GBR is a sequential algorithm, where the next model attempts to correct the errors from the previous model. Based on the performance of each model an associated weight is determined. The final prediction is the weighted average of the individual weak models [7, 8]. The hyper-parameters for the RF model optimized in this work are: number of trees in the forest (values: 1000 and 2000), maximum depth of each tree (values: 2,3 and 4), loss function to be optimized (values: ls and lad) and learning rate to estimate the contribution of each tree (values: 0.01 and 1).
S3. Point-estimate, balanced-dataset models

S3.1 Method
Skewness in the training dataset can affect model training and subsequent predictive ability. To circumvent this issue, the training dataset was reconstructed to balance the skewness by adding 10% duplicate data from the long tail to the original dataset. The new reconstructed dataset is, thus, bigger (110% of the original dataset) with smaller skewness. Regression models were developed on the new reconstructed dataset similar to the point-estimate models. This process was repeated 500 times to assess the effect of balanced datasets on model predictive performance, if any. Figure S1 schematically represents the process of balancing a dataset using the CHR-SUB and rat as an example study type and species combination.
S3.2 Results
Point-estimate with balanced dataset model results show marginal improvement in the training set but did not show improved results on the external test set. 

S4. Figures

[image: ]
Figure S1. Schematic outlining the process for balancing the training dataset for development of point-estimate balanced dataset models. For each (of n) models, the 10% data is randomly sample from the original training dataset and duplicated to obtain a new training dataset. In this example iteration, the original training dataset which is left skewed with a skewness coefficient = -1.02 is balanced to such that the balanced dataset has a reduced skewness coefficient = -0.91. The balanced dataset is then used for training the models. This process is repeated n times where n = 500.


[image: ]
[bookmark: _GoBack]Figure S2. Feature importance of all the fingerprints and descriptors to the final 5-fold cross-validated random forest model for POD prediction sorted based on the importance value. The relative importance values are 0.10, 0.06, 0.06, 0.06, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.04, 0.04, 0.02, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.00, 0.00 in the order on the plot.  



S5. Tables

	PubChem Fingerprints
	PaDEL Descriptors
	CDK Descriptors
	Random Forest Model Hyper-parameters

	'bitvector2',
 'bitvector11',
 'bitvector12',
 'bitvector14',
 'bitvector15',
 'bitvector19',
 'bitvector20',
 'bitvector178',
 'bitvector185',
 'bitvector257',
 'bitvector286',
 'bitvector299',
 'bitvector308',
 'bitvector333',
 'bitvector340',
 'bitvector341',
 'bitvector345',
 'bitvector346',
 'bitvector356',
 'bitvector374',
 'bitvector376',
 'bitvector380',
 'bitvector381',
 'bitvector390',
 'bitvector405',
 'bitvector416',
 'bitvector420',
 'bitvector553',
 'bitvector582',
 'bitvector594',
 'bitvector614',
 'bitvector637',
 'bitvector656',
 'bitvector688',
 'bitvector696',
 'bitvector697',
 'bitvector698',
 'bitvector712'
	'Sse'
'Spe'
'Si'
'Sv'
'ATS0i'
	'Atomic Polarizabilities',
 'Element Count',
 'VABC Volume Descriptor',
 'Molecular Weight',
 'Molar Mass'
	bootstrap=True, criterion='mse', max_depth=None,
max_features='sqrt', max_leaf_nodes=None,     min_impurity_decrease=0.0, min_impurity_split=None,
min_samples_leaf=1, min_samples_split=2,
min_weight_fraction_leaf=0.0, n_estimators=750, n_jobs=None,
oob_score=False, random_state=5, 
verbose=0, 
warm_start=False




Table S1: Chemical fingerprints, descriptors and model hyper-parameters for the final model. 
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