- 1 Rapid Salivary IgG Antibody Screening for Hepatitis A
- 2
- 3 Swinburne A. J. Augustine,^a# Tarsha N. Eason,^b Kaneatra J. Simmons,^c Shannon M.
- 4 Griffin,^a Clarissa L. Curioso,^d Malini K. D. Ramudit,^d Elizabeth A. Sams,^e Kevin H.
- 5 Oshima,^f Alfred Dufour,^f Timothy J. Wade^e
- 6
- 7 ^aCenter for Public Health and Environmental Assessment, United States Environmental
- 8 Protection Agency, Cincinnati, Ohio, USA
- 9 ^bCenter for Environmental Measurement and Modeling, United States Environmental
- 10 Protection Agency, Athens, Georgia, USA
- ¹¹ ^cDepartment of Biology, College of Arts and Sciences, Fort Valley State University, Ft.
- 12 Valley, Georgia, USA
- 13 ^dOak Ridge Institute for Science Education, Oak Ridge, Tennessee, USA
- 14 ^eCenter for Public Health and Environmental Assessment, United States Environmental
- 15 Protection Agency, Research Triangle Park, North Carolina, USA
- 16 ^fCenter for Environmental Measurement and Modeling, United States Environmental
- 17 Protection Agency, Cincinnati, Ohio, USA
- 18
- 19 Running Head: Rapid Screening Tool for Hepatitis A Infection
- 20
- 21 #Address correspondence to Swinburne A. J. Augustine, augustine.swinburne@epa.gov
- 22
- 23

24

25 Abstract

26 Hepatitis A virus (HAV) is a common infection that is transmitted through the fecal-oral 27 route, shed in the stool of infected individuals and spread either by direct contact or by 28 ingesting contaminated food or water. Each year, approximately 1.4 million acute cases 29 are reported globally with a major risk factor for exposure being low household 30 socioeconomic status. Recent trends show a decrease in anti-HAV antibodies in the 31 general population, with concomitant increases in the numbers of HAV outbreaks. In 32 line with a recreational water study, this effort aims to assess the prevalence of salivary 33 IgG antibodies against HAV and subsequent incident infections (or immunoconversions) 34 in visitors to a tropical beach impacted by a publicly owned treatment works (POTW). 35 We applied a multiplex immunoassay to serially collected saliva samples gathered from 36 study participants who recreated at Boquerón Beach, Puerto Rico. Analysis of assay 37 results revealed an immunoprevalence rate of 16.17% for HAV with 1.43% of the cohort 38 immunoconverting to HAV. Among those who immunoconverted, 10% reported chronic 39 gastrointestinal symptoms and none experienced diarrhea. Tests on water samples 40 indicated good water quality with low levels of fecal indicator bacteria, however, the 41 collection and analysis of saliva samples afforded the ability to detect HAV infections in 42 beachgoers. This rapid assay serves as a cost-effective tool for examining exposure to 43 environmental pathogens and can provide critical information to policy makers, water 44 quality experts and risk assessment professionals seeking to improve and protect 45 recreational water and public health.

46

Augustine 2

Journal of Clinica

47 Keywords: Hepatitis A virus, salivary antibodies, multiplex immunoassay,

48 immunoprevalence, immunoconversion, co-infections, public health

49

50 **INTRODUCTION**

51 Hepatitis A virus is a non-enveloped, RNA virus of the family Picornaviridae, 52 genus Hepatovirus that is spread primarily by the fecal-oral route either by direct contact 53 with infected persons or by the ingestion of contaminated food or water (1). Although 54 HAV infections are usually asymptomatic and sub-clinical in children (70% of children 55 under age 6 often do not develop symptoms) (2, 3), 70% of adolescents and adults 56 develop symptoms to the virus which is linked to liver failure and can cause death 57 particularly in older adults (4). The incubation period for HAV is estimated at 14-49 58 days (5) with jaundice occurring in about 10% of infected children and 75% of infected 59 adults (6). At about 28 days into the incubation period, patients usually exhibit non-60 specific signs and symptoms (e.g., fever, malaise, anorexia, jaundice); followed by 61 gastrointestinal symptoms including nausea, abdominal discomfort and diarrhea; and 62 genitourinary symptoms such as dark urine (7). 63 Low socioeconomic status, poor hygiene conditions and lack of access to safe

Low socioeconomic status, poor hygiene conditions and lack of access to safe water have all been found to be associated with the incidence rate of the disease (4). In Puerto Rico, the median household income is around \$19K; per capita income in past 12 months (in 2017 dollars) is \$12.8K; and the percentage of persons living in poverty is 43.1% (8). In comparison, the median household income for the same period for the mainland US is \$57.7K; with a per capita income of \$31.1K and an 11.8% poverty rate (8). These data show that although Puerto Rico is a US territory, its socioeconomic status

is much lower than that of the mainland. High-income regions such as the United States,
Europe, Canada and Australia have very low endemicity levels and a high proportion of
susceptible adults while low-income regions like sub-Saharan Africa and parts of South
Asia have high endemicity levels and almost no susceptible adolescents and adults (9).
Middle-income regions in Asia, Latin America, Eastern Europe and the Middle East have
been shown to have a mix of intermediate to low endemicity levels suggesting that they
may have an increasing burden of disease (9).

77 Currently, HAV infections are identified and diagnosed using immunological and 78 molecular approaches. Since there are other types of viral hepatitis, it is critical that 79 HAV is differentiated from the other hepatitis viruses. This differentiation is necessary 80 for the proper diagnosis of HAV infection. One approach to correctly diagnosing HAV 81 infection is through serological assays measuring the humoral immune response. Several 82 commercial assays that measure IgM and total anti-HAV antibodies are available (10, 83 11). These serological assays are essential for diagnosis because HAV infection is 84 practically indistinguishable clinically from disease caused by other hepatitis viruses 85 (12). HAV serological assays include: IgM for acute HAV infections (1), 86 radioimmunoassay (13, 14), immunochemical staining (14), enzyme-linked 87 immunosorbent assays (ELISAs) (15), immunoblotting (16), and dot blot immuno-gold 88 filtration (17). Molecular detection methods for HAV include restriction fragment length 89 polymorphism (RFLP) (18), single-strand conformational polymorphism (19), Southern 90 blotting (20), and reverse transcription-PCR (RT-PCR) (21), among others. These 91 methods have been deployed primarily to detect HAV in clinical specimens, food and

92 environmental samples.

Augustine 4

ournal of Clinica

93	Most serological tests involve the use of expensive, invasively acquired serum
94	samples requiring the collection of blood using needles which are considered to be
95	painful and undesirable by many, particularly children. As such, survey recruits are less
96	likely to participate in studies that use invasive collection techniques. Conversely, saliva
97	is an inexpensive, non-invasive, simple and painlessly collected biofluid shown to be a
98	suitable alternative to serum for measuring antibody responses to infectious organisms
99	(22-26). It has emerging applications in research and clinical settings and in fact, several
100	studies have shown the efficacy of salivary antibodies as biomarkers of hepatitis A virus
101	infections (27-29). Our team developed a bead-based, multiplex salivary antibody
102	immunoassay to measure the prevalence of antibodies to multiple waterborne pathogens
103	associated with drinking and recreational water contamination simultaneously (30, 31).
104	Application of the assay has allowed us to measure immunoprevalence (32),
105	immunoconversions (incident infections), co-infections (33), and asymptomatic
106	infections (34) from exposure to various waterborne pathogens in visitors to Boquerón
107	Beach, Puerto Rico. Immunoprevalence (the prevalence of circulating antibodies against
108	specific pathogens) is an important aspect of these studies because it affords the ability to
109	capture the baseline level of exposure at the beginning of a longitudinal study. An
110	immunoconversion is defined as the development of detectable antibodies (typically
111	within a few days of exposure) that can be tracked over time to examine the body's
112	immunological response during infection.Boquerón Beach is one of the water bodies
113	studied as part of US EPA's National Epidemiologic and Environmental Assessment of
114	Recreational (NEEAR) Water Studies (35) and was selected because of potential fecal
115	contamination from a nearby discharging Publicly Owned Treatment Works (POTWs)

Journal of Clinical Microbiology

JCM

116	(35). The NEEAR Water study involved water sampling and testing, epidemiological
117	surveys and the collection of saliva samples. Quantitative polymerase chain reaction
118	(qPCR) and culture-based analyses indicated beach water quality was relatively good
119	with low fecal indicator counts for Enterococci and Bacteriodales (31). As part of the
120	Boquerón Beach study, a total of 468 water samples were collected over 26 days and
121	tested for Enterococcus colony forming units (CFU) by USEPA Method 1600. Results of
122	the water quality studies showed that densities of fecal indicator bacteria were low, and
123	no single day exceeded the USEPA geometric mean criterion of 35 CFU/100 ml for
124	Enterococcus. The highest daily geometric mean was 27 CFU/100 ml (35). Complete
125	results of the water quality study have been reported previously (35). While no specific
126	analyses were performed to detect HAV in the water, researchers were interested in
127	determining whether there was evidence of exposure to the virus in beachgoers as
128	demonstrated by anti-HAV antibodies in the saliva of study participants. In this effort,
129	three saliva samples were collected from consenting study participants with an initial
130	sample (S1) collected at the beach and two follow-up samples self-collected by
131	participants at home 10-14 (S2) and 30-40 days (S3) later. We employed our salivary
132	antibody multiplex immunoassay to assess rates of immunoprevalence and
133	immunoconversions (incident infections) to HAV in samples collected from beachgoers.
134	Further, we examined linkages between possible exposure risk factors and
135	immunoconversion rates.
136	
137	MATERIALS AND METHODS

138 Reagents

Journal of Clinical Microbiology

JCM

Journal of Clinical Microbiology

Journal of Clinical Microbiology

JCM

Rapid screening tool for hepatitis A infection.

139	Polystyrene microspheres (5.6 µm bead) sets were obtained from Luminex Corp. (Austin,
140	TX. USA) at a concentration of 12.5×10^6 beads/ml each. Biotinvlated goat anti-human
1.4.1	LaC (2) asserdary detection on the dy was alteined from KDL (Coithershure MD USA)
141	$IgG(\lambda)$ secondary detection antibody was obtained from KPL (Gatthersburg, MD, USA).
142	HAV Grade II Concentrate antigen was purchased from Meridian BioScience (Memphis,
143	TN, USA) and coupled to one specific bead set in accordance with the optimized
144	multiplex immunoassay. The assay was validated using characterized sera (10 positive
145	and 10 negative) purchased from SeraCare (31) (Milford, MA, USA).
146	
147	Antigen coupling and confirmation using animal-derived antibodies
148	Beads were activated and coupled, as previously described, and serial dilutions of
149	primary capture antibodies were used to confirm that the beads were coupled properly,
150	thus ensuring that the dynamic range of the assay could be defined (30, 31). Briefly,
151	coupled bead stocks were diluted in phosphate-buffered saline, pH 7.4, with 1% bovine
152	serum albumin (PBS-BSA) to a final concentration of 100 beads/ μ l. Beads (5 x 10 ³)
153	from each bead set were added to individual wells of a pre-wet 96-well filter plate. An
154	equal volume 2-fold serial dilutions of anti-species IgG primary antibody (from 12.5
155	$\mu g/ml - 0.1 \ \mu g/ml$) was added to the beads, mixed gently, covered, and allowed to
156	incubate in the dark, at room temperature for 30 min at 500 rpm on a VWR [™] microplate
157	shaker (Radnor, PA, USA).
158	After incubation, supernatant was vacuumed out, wells were washed twice with
159	100 µl of PBS pH 7.4 containing 0.05% Tween 20 (PBS-T) (Sigma, St. Louis, MO,
160	USA) and vacuumed again to remove excess buffer. Beads were resuspended in PBS-
161	BSA buffer and incubated with 0.8 μ g of biotinylated anti-species IgG secondary

163 room temperature for 30 min on a plate shaker. After a 30-minute incubation in the dark 164 on a plate shaker to protect the beads from bleaching, the wells were washed twice as 165 above. Then the samples were incubated for 30 minutes with 1.2 µg of streptavidin-R-166 phycoerythrin, vacuumed, washed twice and resuspended in 100 µl of PBS-BSA. The 167 plates were then analyzed on a Luminex 100 analyzer (Luminex Corporation, Austin, 168 TX, USA). 169 170 Saliva collection, processing and analysis 171 During the summer of 2009, informed consent was obtained from subjects in 172 accordance with Institutional Review Board approval (IRB # 08-1844, University of 173 North Carolina, Chapel Hill, NC, USA) and saliva samples were collected from 2091 174 study participants at Boquerón Beach, Puerto Rico (Figure 1). During the initial sample 175 collection at the beach, study participants were guided on how to perform the sample 176 collection and instructed to rub the Oracol[™] saliva collection device (Malvern Medical 177 Developments, Worcester, U.K) against the gingival crevices of the oral mucosa 178 (between the gums and teeth) to absorb saliva. Individuals who reported dental or any 179 other illnesses were excluded from the study. Infants under one year old were also 180 excluded at the time of the initial collection because of the potential for contamination by 181 maternal antibodies and high rates of non-waterborne infections. Within two days post 182 collection, participants shipped the second and third samples overnight on ice to US EPA

detection antibody. The filter plates were covered and allowed to incubate in the dark at

- 183 in Cincinnati for storage at 4°C until ready for processing. Within one week of receipt,
- 184 OracolTM saliva collection devices were thawed to room temperature and centrifuged

Augustine 8

Downloaded from http://jcm.asm.org/ on August 10, 2020 by guest

162

185	twice (first at 491 x g, 10°C for 5 min to recover the saliva off the collection sponge and
186	then at 1,363 x g, 10°C for an additional 5 min to pellet debris from the saliva) and
187	transferred to 1.5 ml microcentrifuge tubes. The samples were then centrifuged at 1,500
188	x g for 3 min and the supernatant transferred to a fresh 1.5 ml microcentrifuge tube and
189	stored at -80°C.
190	For analysis, 1:4 dilution of the saliva samples in phosphate buffered saline
191	containing PBS-1% BSA was added to prewet and vacuumed 96-well filter plates
192	(Millipore, Billerica, MA, USA). Beads (5 x 10^3) from each bead set and an equal
193	volume of diluted saliva were loaded onto each well resulting in a final dilution of 1:8 in
194	a total volume of 100 μl per well. The loaded filter plates were processed, as previously
195	described, reporter fluorescence was measured using a Luminex 100 analyzer and
196	expressed as Median Fluorescence Intensity (MFI) of at least 100 beads per bead set (30,
197	31). MFI readings are produced for every sample and serve as a proxy for antibodies
198	present against the targeted pathogens. Each 96-well plate takes an average of 45
199	minutes to run the 29 targets/analytes we tested in each well on the Luminex 100 TM
200	analyzer.
201	
202	Assay controls, cross-reactivity and signal to noise ratio (SNR)
203	Assay controls have been described in detail elsewhere (31), but briefly stated, a
204	unique, uncoupled bead set was added to the assay to evaluate non-specific binding and
205	sample to sample variability. These control beads were treated identically to antigen
206	conjugated beads and blocked with BSA but were not coupled to any antigen during the
207	coupling step. Samples with reactivity to uncoupled control beads at \geq 500 MFI were

Augustine 9

Journal of Clinical Microbiology

208	discarded to control for non-specific binding and/or possible contamination of the saliva
209	by serum from gum disease or other sources. Tests for cross-reactivity were performed
210	in monoplex and duplex. Assay sensitivity was validated with characterized human
211	plasma samples as previously described (30, 31) and a signal to noise ratio (SNR) was
212	calculated by dividing the MFI of the specific antigen signals by the MFI of the
213	uncoupled control beads for each sample (31, 36).
214	
215	Defining immunoprevalence and immunoconversions
216	Cut-off criteria were established in (32) (Cut-off = $10^{\text{mean}(h) + 3 \text{ SD}(h)}$, where h =
217	log10 (MFI of control beads)) to distinguish immunopositive and immunonegative
218	samples and employed to measure immunopositivity and immunoprevalence (baseline
219	immunopositivity) in the population. Immunoconversions are defined using the more
220	stringent three sample criteria presented by Simmons et al (33) which extends the
221	traditional four-fold increase from S1 to S2 definition to ensure that the S2 sample is
222	immunopositive (MFI \geq cut-off point) and accounts for the fact that IgG levels are
223	expected to remain relatively high and not drop to zero during the 30 - 40-day period
224	after initial exposure; accordingly, the immunoconversion criteria is S2 \ge 4 \times S1; S2 \ge
225	cutoff; $S3 \ge 3 \times S1$. Immunoconversions were only computed for study participants who
226	provided all three samples.
227	
228	Statistical analyses
229	All data analyses were performed using Microsoft Excel 2016, JMP 14 and

230 MATLAB Release 2018b. To examine possible risk factors of exposure, we used Fisher's

JCM

231	exact test to provide odds ratios and two-sided p-values related to the association between
232	HAV immunoconversions and general epidemiological survey data compiled during the
233	NEEAR Water study on participant gender, age, consumption of undercooked meat or
234	raw fish, contact with unknown animals contact, head immersion swimming, diarrhea at
235	10-14 days, contact with ill people, and chronic issues, including gastrointestinal (GI)
236	disease, allergies, and asthma.
237	
238	RESULTS
239	Beach selection and study population
240	Figure 1A shows a map of the United States including Puerto Rico. Boquerón
241	Beach, Puerto Rico is in the beach town of Cabo Rojo in the Southwest of the island
242	(Figure 1B) and is commonly attended by families on the island (70% of the visitors were
243	locals who reported six or more visits per year). As discussed in the Introduction,
244	socioeconomically, Puerto Rico's status falls within the low range with high endemicity
245	levels of HAV infection. Study participants provided 5533 serially collected saliva
246	samples; however, 95 samples were removed from further analysis after quality
247	assurance/quality control procedures discussed previously (34). The remaining 5438
248	samples were broken down as follows: S1: 2078, S2: 1694, and S3: 1666.
249	
250	Bead coupling and confirmation
251	To confirm that the HAV antigen was sufficiently coupled to the carboxylated beads,
252	anti-HAV polyclonal antibodies were exposed to the antigen-coupled beads as well as
253	uncoupled control beads (Figure 2).

Downloaded from http://jcm.asm.org/ on August 10, 2020 by guest

JCM

Journal of Clinical Microbiology

254

255	Prevalence of HAV exposure and incident infections in study participants
256	Figure 3 provides a scatterplot of the MFI response for all the saliva samples collected
257	with the positive samples showing in red. To determine the baseline immune status of
258	the beachgoers, HAV immunoprevalence was computed from saliva samples collected
259	from participants at the beach (S1). Results indicate that beachgoers had a 16.17%
260	(336/2078) immunoprevalence rate. Nearly 70% of the participants gave all three
261	samples (1399/2078) and analysis of samples from this cohort was used to determine
262	immunoconversions (incident infections). Immunopositivity rates for this group
263	remained relatively consistent with anti-HAV antibodies detected in approximately 16%
264	of samples from S1 and subsequent samples ((S1: 16.15% (226), S2 and S3: 15.44%
265	(216)) (Figure 4).
266	Analysis of MFI results indicated that twenty (20) people (1.43%)
267	immunoconverted to HAV. Epidemiological surveys were completed by most of the
268	participants (n = 1298) and accordingly, used to assess possible linkages between
269	immunoconversion rates and both demographic and exposure risk factors (Table 1).
270	Most of the participants were female; did not consume undercooked meat or raw fish; nor
271	did they have unknown animal contact. Furthermore, they did not swim in the previous
272	two weeks nor did they report diarrhea or contact with ill people. While most immersed
273	their head when swimming, relatively few of the participants reported suffering from
274	
	allergies, asthma or chronic GI illness.
275	allergies, asthma or chronic GI illness. Individuals with HAV immunoconversions ranged in age from 6 to 88 (mean =

JCM

Journal of Clinical Microbiology

Journal of Clinical Microbiology

277	Although more females participated in the study, slightly more males experienced HAV
278	infections and nearly all the individuals with HAV immunoconversions immersed their
279	head while swimming (85%). Figure 5 provides a visualization of the MFI responses
280	from the baseline to final sample (S1-S3) and associated chronic underlying conditions
281	(CUCs) for those who immunoconverted. The black lines denote the 7 (35%)
282	participants suffering from specific chronic conditions showing in the lower (B) panel
283	(i.e., gastrointestinal (GI) issues: 2 (10%), allergies: 3(15%) and asthma: 2 (10%). Most
284	(65%: 13/20) of the HAV immunoconversions were unaccompanied by the chronic
285	conditions considered (denoted by the gray line/shading in Figure 5B). Consequently,
286	there was no statistically significant association (p-values $>> 0.05$) between HAV
287	immunoconversions and any of the demographic or exposure risk factors (Table 1).
288	
289	DISCUSSION
290	The importance of population-based studies as a valuable tool for surveillance
291	
	cannot be understated. These studies are essential in monitoring immunoprevalence rates
292	cannot be understated. These studies are essential in monitoring immunoprevalence rates over time to evaluate changes in epidemiological trends and provide important
292 293	cannot be understated. These studies are essential in monitoring immunoprevalence rates over time to evaluate changes in epidemiological trends and provide important information regarding exposure susceptibility and potential future outbreaks; thereby
292 293 294	cannot be understated. These studies are essential in monitoring immunoprevalence rates over time to evaluate changes in epidemiological trends and provide important information regarding exposure susceptibility and potential future outbreaks; thereby facilitating the efforts of policy makers, public health practitioners and environmental
292 293 294 295	 cannot be understated. These studies are essential in monitoring immunoprevalence rates over time to evaluate changes in epidemiological trends and provide important information regarding exposure susceptibility and potential future outbreaks; thereby facilitating the efforts of policy makers, public health practitioners and environmental managers to adapt and/or adopt preventive measures (27). As such, rapid, non-invasive
292 293 294 295 296	 cannot be understated. These studies are essential in monitoring immunoprevalence rates over time to evaluate changes in epidemiological trends and provide important information regarding exposure susceptibility and potential future outbreaks; thereby facilitating the efforts of policy makers, public health practitioners and environmental managers to adapt and/or adopt preventive measures (27). As such, rapid, non-invasive methods are needed to monitor changes in the population to determine the sources of
292 293 294 295 296 297	 cannot be understated. These studies are essential in monitoring immunoprevalence rates over time to evaluate changes in epidemiological trends and provide important information regarding exposure susceptibility and potential future outbreaks; thereby facilitating the efforts of policy makers, public health practitioners and environmental managers to adapt and/or adopt preventive measures (27). As such, rapid, non-invasive methods are needed to monitor changes in the population to determine the sources of exposures to these diseases. The bead-based salivary antibody immunoassay presented
 292 293 294 295 296 297 298 	 cannot be understated. These studies are essential in monitoring immunoprevalence rates over time to evaluate changes in epidemiological trends and provide important information regarding exposure susceptibility and potential future outbreaks; thereby facilitating the efforts of policy makers, public health practitioners and environmental managers to adapt and/or adopt preventive measures (27). As such, rapid, non-invasive methods are needed to monitor changes in the population to determine the sources of exposures to these diseases. The bead-based salivary antibody immunoassay presented and applied in this study serves as a rapid screening test of HAV antibody prevalence and

Augustine 13

Journal of Clinical Microbiology

JCM

300

301

ournal of Clinical Microbiology 302 a key group in epidemiologic studies. Relatively small sample volumes are needed, and 303 trained personnel are not required to obtain samples (27). 304 In our study, we found a 16.17% immunoprevalence rate of anti-HAV antibodies 305 in the beachgoers which is about half of the overall immunoprevalence rate of 31.2% 306 among US-born persons ≥ 2 years of age between 2007 – 2012 (37). Researchers have 307 shown that among US-born persons ≥ 20 years old, there was a 24.2% decrease in the 308 overall age-adjusted prevalence of anti-HAV antibodies during the same period, down 309 from 29.5% between 1999 – 2006 (37). Only 1.43% of the participants who provided all 310 three samples were found to have HAV immunoconversions. Of the 20 participants who 311 immunoconverted, only 7 (35%) reported having underlying chronic conditions; none 312 experienced diarrhea and there was no statistically significant association between any of 313 the demographic or exposure risk factors tested. 314 The low immunoconversion rate suggests that there is some level of immune 315 protection in the population. Residents of the Cabo Rojo and Boquerón Beach area were 316 the primary visitors to the beach (most participants reported multiple visits to the beach 317 each year). In this study, we did not determine whether tourists at the beach were more 318 likely to have become exposed or themselves displayed evidence of previous HAV 319 infections in the initial S1 sample. This would have provided a valuable comparison in 320 rates of immunoprevalence and incident infections between tourists and residents; as well 321 as the efficacy of the HAV vaccine and the effectiveness of global vaccination programs.

expands the applicability and future utility of the method. Saliva collection is less

expensive and is neither invasive nor painful; hence, it is very well tolerated by children,

322 Although information regarding hepatitis A vaccination series completion rates is limited,

low HAV vaccine series completion rates were observed among cohorts of

commercial/Medicare (32%) and Medicaid enrollees in the United States (21%) (38).

325	Additionally, adherence with and completion of recommended hepatitis vaccination
326	schedules among adults in the US has been described as suboptimal, leaving a substantial
327	proportion of adults at risk (39). The same is true for adults in the United Kingdom where
328	adherence rates topped out at 23% (40). We may have observed higher symptomatic
329	infections in tourists compared to residents who, through repeated exposures, would have
330	been immunoprotected and therefore less likely to be symptomatic. We observed this
331	phenomenon with norovirus GI.1 and GII.4 infections in the study population where
332	evidence of relatively high levels of anti-norovirus antibodies were observed in the
333	population without the expected symptoms of gastrointestinal illness (34).
334	Still, the estimated decrease in anti-HAV antibodies in those ≥ 20 years of age
335	presents a public health challenge because it suggests that a substantial number of
336	persons in the population remain susceptible to HAV infection at ages when the risk of
337	morbidity and mortality from HAV infections is highest (41). Outbreaks occur because
338	people have not been vaccinated or exposed or their immunity has declined over time.
	325 326 327 328 329 330 331 332 333 334 335 336 337 338

323

324

339 Accordingly, the observed decrease in anti-HAV antibodies in the population presents an

340 ideal environment for outbreaks to occur.

341 Limitations of this study include non-specific binding of antibodies in human

- 342 saliva to the HAV antigen coupled to the beads, potential for cross-reactivity in the
- 343 multiplex assay and the difficulty in correlating water quality to antibody responses,
- 344 symptomology and incident infections. These limitations were addressed using a number

345	of approaches (e.g., testing in monoplex and duplex, validating antigens using
346	characterized samples) and are discussed in greater detail previously (30, 31).
347	Although not specifically stated, a core goal of the overall effort is to link HAV
348	incident infections to water quality. Because HAV infections are often asymptomatic in
349	some populations, there is great difficulty in directly linking symptoms or water quality
350	to HAV infection unless those symptoms had progressed to jaundice or HAV viral
351	particles were isolated directly from the stool of the participants. An additional limitation
352	is that symptomology information was collected only at S2 (10-14 days post beach visit)
353	and can be highly subjective. As such, it would be difficult to link symptomology to
354	hepatitis A infection because of the long incubation period, and the fact that symptoms
355	are not generally expressed until approximately day 28. These results dictate that
356	symptomology data also be collected during the submission of both S2 and S3 samples to
357	capture symptoms from pathogens with longer incubation periods. Previous testing of the
358	same saliva samples detected evidence of exposure and immunoconversions against H.
359	pylori, C. jejuni, T. gondii and noroviruses GI.1 and GII.4 (pathogens that produce
360	similar GI symptoms) and the use of the immunoassay afforded the ability to examine
361	exposure patterns even when symptoms or possible risk factors are absent. Further,
362	linking water quality to HAV infections is difficult because investigators did not isolate
363	HAV directly from the water samples. As a part of the NEEAR Water study, water
364	quality was assessed at Boquerón Beach during the study period using Enterococcus CFU
365	(Colony forming units per 100 ml), Enterococcus CCE (qPCR Calibrator Cell
366	Equivalents per 100 ml) and culture-based methods but was not analyzed specifically for
367	HAV. Results indicated that the water quality was relatively good with low fecal

Journal of Clinical Microbiology

368	indicator counts for Enterococci and Bacteriodales (35). Wade et al 2009 noted that any
369	attempt to draw conclusions regarding the water quality data at Boquerón Beach would
370	be questionable because of interference in the qPCR assay from an unknown source (35).
371	Further, according to Wade et al 2010, fecal indicator bacteria are used to monitor
372	recreational waters because it is usually impractical to test these waters directly for the
373	many and diverse pathogenic microorganisms associated with human derived sewage
374	(42). Accordingly, linking water quality to infection rates would require that other tests
375	be performed to directly examine the presence of targeted organisms in water samples.
376	In a recent study, researchers developed a reverse-transcription plus nested or semi-
377	nested PCR assay followed by sequencing and phylogenetic analysis to detect and
378	genotype noroviruses and rotaviruses simultaneously in a wastewater treatment and
379	reclamation system (43). Such an approach could be quite beneficial in linking water
380	quality more directly with exposure health effects.
381	In summary, results from this effort demonstrate the utility and benefits of a rapid
382	population-based, salivary antibody screening method in monitoring epidemiologic
383	changes in the population. To better understand the potential cost and time savings
384	afforded by the multiplex immunoassay, we compared it to an ELISA. While both
385	methods can be used to analyze different types of proteins, the core difference lies in the
386	fact that unlike an ELISA which can only assess one analyte at a time, a multiplex
387	immunoassay is a high-throughput method that possesses the ability to examine between
388	100 to 500 analytes, simultaneously. ThemoFisher estimates that the cost of analyzing
389	one analyte is essentially the same for both methods; however, the savings per target
390	increases as the number of analytes increases (44). For example, while analyzing 29

Downloaded from http://jcm.asm.org/ on August 10, 2020 by guest

Journal of Clinical Microbiology

391	analytes would cost nearly \$9,000 US and take about 120 hours (5 days) using ELISA
392	test kits, multiplexing the analytes would cost roughly \$3,700 US and can be achieved in
393	45 minutes (44). The use of a multiplex immunoassay can facilitate the timely
394	dissemination of information useful for public health officials and policy makers and
395	could lead to measures such as more robust vaccination schedules and more stringent
396	water and food quality advisories to reduce future exposures and corresponding incident
397	infections. According to the US Centers for Disease Control and Prevention (CDC),
398	HAV surveillance can assist in (1) detecting and providing data to control outbreaks; (2)
399	identify contacts of case-patients who require post-exposure prophylaxis; (3) characterize
400	changes in the epidemiology of infected populations and risk factors; and (4) guide
401	vaccination policies and other prevention efforts (41). Hence, this bead-based salivary
402	antibody assay can potentially be used as a rapid, inexpensive, noninvasive screening tool
403	for HAV and other waterborne infections to help public health officials, policy makers,
404	risk assessors, first responders, and the public in mitigating the health and financial
405	burden posed by exposure to existing and emerging pathogens. Moreover, the reduced
406	cost of multiplexing may be economically beneficial to developing and under-developed
407	countries by providing a screening tool whereby antibody responses to multiple
408	pathogens can be studied simultaneously, rapidly and noninvasively.
409	
410	CONFLICT OF INTEREST STATEMENT
411	The authors report no conflict of interest.

412

413 ETHICS STATEMENT

Augustine 18

Journal of Clinical Microbiology

JCM

Journal of Clinical Microbiology

JCM

Journal of Clinical Microbiology Rapid screening tool for hepatitis A infection.

414	Approval was obtained from the University of North Carolina, Chapel Hill, NC, USA
415	(IRB # 08-1844), for the collection of saliva samples from beachgoers at Boquerón
416	Beach, Puerto Rico, as part of the US EPA NEEAR Water Study. Study subjects
417	provided informed consent and were instructed on the use of the Oracol TM saliva
418	collection device. Infants younger than 1 year were not included. Informed consent was
419	obtained from parents of minors.
420	
421	AUTHORS AND CONTRIBUTORS
422	SAJA designed the study with KS, and TE. TW, and EAS provided the saliva samples.
423	SAJA, KJS, SG, CC and MKDR conducted the laboratory experiments and processed the
424	raw assay data. TE performed the data analysis. SAJA and TE wrote the original
425	manuscript and SAJA, TE, KS, CC, SG, MR, KO, EAS, and TW, reviewed, provided
426	comments and approved the final manuscript.
427	
428	Funding
429	The United States Environmental Protection Agency through its Office of Research and
430	Development funded and managed the research described here. It has been subjected to
431	Agency's administrative review and approved for publication.
432	
433	ACKNOWLEDGEMENTS
434	CLC and MKDR were supported through an appointment to the Research Participation

435 Program at the U.S. Environmental Protection Agency administered by the Oak Ridge

Journal of Clinical Microbiology Rapid screening tool for hepatitis A infection.

436	Institute for Science and	Education th	hrough an	interagency a	agreement	between t	he U.S.
			0		0		

437 Department of Energy and the U.S. Environmental Protection Agency.

438

- 439 **DISCLAIMER**
- 440 Mention of trade names or commercial products does not constitute endorsement or
- 441 recommendation by the United States Environmental Protection Agency for use.
- 442
- 443
- 444 **References**
- 445

446	1.	Cuthbert JA. 2001. Hepatitis A: old and new. Clin Microbiol Rev 14:38-58.
447	2.	Armstrong GL, Bell BP. 2002. Hepatitis A virus infections in the United States:
448		model-based estimates and implications for childhood immunization. Pediatrics
449		109:839-45.
450	3.	Tejada-Strop A, Zafrullah M, Kamili S, Stramer SL, Purdy MA. 2018.
451		Distribution of hepatitis A antibodies in US blood donors. Transfusion 58:2761-
452		2765.
453	4.	Koroglu M, Jacobsen KH, Demiray T, Ozbek A, Erkorkmaz U, Altindis M. 2017.
454		Socioeconomic indicators are strong predictors of hepatitis A seroprevalence rates
455		in the Middle East and North Africa. J Infect Public Health 10:513-517.
456	5.	Hadler SC, Erben JJ, Matthews D, Starko K, Francis DP, Maynard JE. 1983.
457		Effect of immunoglobulin on hepatitis A in day-care centers. JAMA 249:48-53.
458	6.	Bull AR, Kimmance KJ, Parry JV, Perry KR. 1989. Investigation of an outbreak
459		of hepatitis A simplified by salivary antibody testing. Epidemiol Infect 103:371-6.
460	7.	Nainan OV, Xia G, Vaughan G, Margolis HS. 2006. Diagnosis of hepatitis a virus
461		infection: a molecular approach. Clin Microbiol Rev 19:63-79.
462	8.	Anonymous. 2018. QuickFacts Puerto Rico
463		https://www.census.gov/quickfacts/PR. US Census Bureau.
464	9.	Jacobsen GD, Jacobsen KH. 2011. Health awareness campaigns and diagnosis
465		rates: evidence from National Breast Cancer Awareness Month. J Health Econ
466		30:55-61.
467	10.	Dignani MC, Miceli MH, Rosa CM, Gatica J, Martinez-Rolon J, Pizzolato M.
468		2003. Loss of hepatitis A virus (HAV) antibodies after peripheral stem cell

469 transplantation (PSCT). Bone Marrow Transplant 31:809-12.

470	11.	Jindal M, Rana SS, Gupta RK, Das K, Kar P. 2002. Serological study of hepatitis
471		A virus infection amongst the students of a medical college in Delhi & evaluation
472		of the need of vaccination. Indian J Med Res 115:1-4.
473	12.	Stapleton JT. 1995. Host immune response to hepatitis A virus. J Infect Dis 171
474		Suppl 1:S9-14.
475	13.	Purcell RH, Wong DC, Moritsugu Y, Dienstag JL, Routenberg JA, Boggs JD.
476		1976. A microtiter solid-phase radioimmunoassay for hepatitis A antigen and
477		antibody. J Immunol 116:349-56.
478	14.	Huang SN, Lorenz D, Gerety RJ, 1979, Electron and immunoelectron
479		microscopic study on liver tissues of marmosets infected with hepatitis A virus.
480		Lab Invest 41:63-71.
481	15.	Delem AD. 1992. Comparison of modified HAVAB and ELISA for determination
482		of vaccine-induced anti-HAV response. Biologicals 20:289-91.
483	16.	Wang CH, Tschen SY, Heinricy U, Weber M, Flehmig B, 1996. Immune
484	10.	response to benatitis A virus cansid proteins after infection I Clin Microbiol
485		34·707-13
486	17	Shao ZI Xu DZ Yan YP Li IH Zhang IX Zhang ZY Pan BR 2003 Detection
487	17.	of anti-HAV antibody with dot immunogold filtration assay World I
488		Gastroenterol 9:1508-11
489	18	Goswami BB Burkhardt W 3rd Cebula TA 1997 Identification of genetic
490	10.	variants of henatitis A virus I Virol Methods 65.95-103
490	19	Fujiwara K. Yokosuka O. Ehata T. Imazeki F. Saisho H. 2000. PCR-SSCP
492	17.	analysis of 5'-nontranslated region of henatitis A viral RNA: comparison with
/03		cliniconathological features of henatitis A Dig Dis Sci 45:2422-7
493 797	20	Buti M Jardi R Bosch A Rodriguez F Sanchez G Pinto R Costa X Sanchez-
404 705	20.	Avila IF Cotrina M Esteban R Guardia L 2001 [Assessment of the PCR-
495 796		Southern blot technique for the analysis of viremia in nationts with acute benatitis
490		A] Gastroenterol Henatol 24:1-4
498	21	Cromeans TL Nainan OV Margolis HS 1997 Detection of henatitis A virus
490 /199	21.	RNA in ovster meat. Appl Environ Microbiol 63:2/160-3
500	22	McKie & Vyse & Maple C 2002 Novel methods for the detection of microbial
500	22.	antibodies in oral fluid Lancet Infect Dis 2:18-24
502	23	Moorthy M Daniel HD Kurian G Abraham P 2008 An evaluation of saliva as
502	23.	an alternative to plasma for the detection of benatitis C virus antibodies. Indian L
503		Med Microbiol 26:327-32
505	24	Mortimer PP Parry IV 1988 The Use of Saliva for Viral Diagnosis and
505	27.	Screening, Enidemiology and Infection 101:107 200
507	25	Nokes DI Enguselassia E Nigatu W Vyse AI Cohen BI Brown DWG Cutts
507	25.	The second fluid the notantial to replace serum for the evaluation of
500		population impunity levels? A study of measles, ruballe and henetitis B in rural
510		Ethionia Dullatin of the World Health Organization 70:588 505
510	26	O'Connell T. Thereten I. O'Elenegen D. Steineg A. Connell J. Deeley S.
510	20.	McCormook G. 2001. Oral fluid collection by most for viral antibody testing. Let J.
512		Fridemial 20/200, 201
515	27	Epidemioi 50:298-501. Ovollin S. Hutso V. Vondonkorako H. Classis F. Verkesser, F. D. Cash J. Ver
514	21.	Quominis, Huise V, vandenbergne H, Claeys F, Vernaegen E, De Cock L, Van
515		LOOCK F, 10p G, Van Damme P, Vranckx K, Van Oyen H. 2007. A population-

Journal of Clinical Microbiology

516		based prevalence study of hepatitis A, B and C virus using oral fluid in Flanders,
517		Belgium. Eur J Epidemiol 22:195-202.
518	28.	Stuart JM, Majeed FA, Cartwright KA, Room R, Parry JV, Perry KR, Begg NT.
519		1992. Salivary antibody testing in a school outbreak of hepatitis A. Epidemiol
520		Infect 109:161-6.
521	29.	Thieme T, Yoshihara P, Piacentini S, Beller M. 1992. Clinical evaluation of oral
522		fluid samples for diagnosis of viral hepatitis. J Clin Microbiol 30:1076-9.
523	30.	Augustine SA, Eason TN, Simmons KJ, Curioso CL, Griffin SM, Ramudit MK,
524		Plunkett TR. 2016. Developing a Salivary Antibody Multiplex Immunoassay to
525		Measure Human Exposure to Environmental Pathogens. J Vis Exp
526		doi:10.3791/54415.
527	31.	Augustine SAJ, Simmons KJ, Eason TN, Griffin SM, Curioso CL, Wymer LJ,
528		Shay Fout G, Grimm AC, Oshima KH, Dufour A. 2015. Statistical approaches to
529		developing a multiplex immunoassay for determining human exposure to
530		environmental pathogens. J Immunol Methods 425:1-9.
531	32.	Augustine SAJ, Simmons KJ, Eason TN, Curioso CL, Griffin SM, Wade TJ,
532		Dufour A, Fout GS, Grimm AC, Oshima KH, Sams EA, See MJ, Wymer LJ.
533		2017. Immunoprevalence to Six Waterborne Pathogens in Beachgoers at
534		Boqueron Beach, Puerto Rico: Application of a Microsphere-Based Salivary
535		Antibody Multiplex Immunoassay. Front Public Health 5:84.
536	33.	Simmons KJ, Eason TN, Curioso CL, Griffin SM, Ramudit MKD, Oshima KH,
537		Sams EA, Wade TJ, Grimm A, Dufour A, Augustine SAJ. 2019. Visitors to a
538		Tropical Marine Beach Show Evidence of Immunoconversions to Multiple
539		Waterborne Pathogens. Front Public Health 7:231.
540	34.	Wade TJ, Augustine SAJ, Griffin SM, Sams EA, Oshima KH, Egorov AI,
541		Simmons KJ, Eason TN, Dufour AP. 2018. Asymptomatic norovirus infection
542		associated with swimming at a tropical beach: A prospective cohort study. PLoS
543		One 13:e0195056.
544	35.	Wade TJ, Sams, E. A., Haugland, R., Brenner, K. P., Li, Q., Wymer, W., Molina,
545		M., Oshima, K., Dufour, A. 2009. Report on 2009 National Epidemiologic and
546		Environmental Assessment of Recreational Water Epidemiology Studies.
547	2.5	USEPA,
548	36.	Cretich M, Daaboul GG, Sola L, Unlu MS, Chiari M. 2015. Digital detection of
549		biomarkers assisted by nanoparticles: application to diagnostics. Trends
550	27	Biotechnol doi:10.1016/j.tibtech.2015.03.002.
551	37.	Klevens RM, Denniston MM, Jiles-Chapman RB, Murphy TV. 2015. Decreasing
552		immunity to hepatitis A virus infection among US adults: Findings from the
553		National Health and Nutrition Examination Survey (NHANES), 1999-2012.
554	20	Vaccine 33:6192-8.
555	38.	Ghaswalla PK, Patterson BJ, Cheng WY, Duchesneau E, Macheca M, Duh MS.
556		2018. Hepatitis A, B, and A/B vaccination series completion among US adults: A
557	20	claims-based analysis. Hum Vaccin Immunother 14:2/80-2/85.
558	39.	Irantnam L, Kurosky SK, Zhang D, Johnson KD. 2018. Adherence with and
559		completion of recommended hepatitis vaccination schedules among adults in the
200		United States. vaccine 36:5333-5339.

Journal of Clinical Microbiology

JCM

Journal of Clinical Microbiology

561	40.	Johnson KD, Lu X, Zhang D. 2019. Adherence to hepatitis A and hepatitis B					
562		multi-dose vaccination schedules among adults in the United Kingdom: a					
563		retrospective cohort study. BMC Public Health 19:404.					
564	41.	Hofmeister MG, Klevens, M., Nelson, N. 2018. Chapter 3: Hepatitis A					
565		https://www.cdc.gov/vaccines/pubs/surv-manual/index.html. Roush SW, baldy, L.					
566		M., Kirkconnell Hall, M. A., National Center for Immunization and Respiratory					
567		Diseases, CDC, Atlanta, GA, USA, https://www.cdc.gov/vaccines/pubs/surv-					
568		manual/.					
569	42.	Wade TJ. Sams E. Brenner KP. Haugland R. Chern E. Beach M. Wymer L.					
570		Rankin CC, Love D, Li O, Noble R, Dufour AP, 2010, Rapidly measured					
571		indicators of recreational water quality and swimming-associated illness at marine					
572		beaches: a prospective cohort study. Environ Health 9:66.					
573	43	li Z. Wang XC. Xu L. Zhang C. Rong C. Rachmadi AT. Amarasiri M. Okabe S.					
574		Funamizu N Sano D 2019 Fecal Source Tracking in A Wastewater Treatment					
575		and Reclamation System Using Multiple Waterborne Gastroenteritis Viruses					
576		Pathogens 8					
577	44	Anonymous The power of multiplexing					
578		https://www.thermofisher.com/content/dam/LifeTech/global/technical-reference-					
579		library/s2s/dbourdon/The%20nower%20of%20multiplexing.pdf_Accessed					
580		notal frazista obaraoni i ne vezopo wei vezoor vezona angiperingi pari. recessea					
500							
581							
501							
582	Table	1. Evaluation of associations between HAV immunoconversions (IC) and notential					
202	ruore						
583	risk fa	actors. Fisher's exact test was used to compute two-sided p-values. In the table, IC					
000	11011 1						
584	(%N)	is the percentage of people who immunoconverted and %IC is the percentage of					
585	immu	immunoconversions. Note: 1298 of the participants (N=1298) returned surveys but the					
586	numb	ers for each category may not add up to 1298 (or 20 immunoconversions) due to					
587	non-r	esponse on individual questionnaires.					

588

	IC (%N)	% IC
All (N=1298)	20 (1.54%)	100.0%
Gender		
Male (N = 548)	11 (2.01%)	55.0%
Female (N=750)	9 (1.2%)	45.0%
p-value	0.2611	

Journal of Clinical Microbiology

Journal of Clinical Microbiology

JCM

Age		
0-4 (N=48)	0 (0%)	0.0%
5-11 (N=148)	2 (1.35%)	10.0%
12-19 (N=209)	2 (0.96%)	10.0%
20-34 (N-319)	4 (1.25%)	20.0%
35-over (N=569)	12 (2.11%)	60.0%
p-value	0.8121	
Children under 7		
No (N=1140)	19 (1.67%)	95.0%
Yes (N=158)	1 (0.63%)	5.0%
p-value	0.498	
Undercooked meat consumption		
No (N=1263)	20 (1.58%)	100.0%
Yes (N=34)	0 (0%)	0.0%
p-value	1	
Raw fish consumption		
No (N=1248)	20 (1.6%)	100.0%
Yes (N=49)	0 (0%)	0.0%
p-value	1	
Unknown animal contact		
No (N = 1214)	18 (1.48%)	90.0%
Yes (N = 48)	1 (2.08%)	5.0%
p-value	0.5239	
Swimming in previous two weeks		
No (N = 884)	14 (1.58%)	70.0%
Yes (N = 414)	6 (1.45%)	30.0%
p-value	1	
Head immersion swimming		
No (N = 394)	3 (0.76%)	15.0%
Yes (N = 903)	17 (1.88%)	85.0%
p-value	0.1495	
Diarrhea at 10-12 days		
No (N = 1248)	19 (1.52%)	95.0%

Journal of Clinical Microbiology

Journal of Clinical Microbiology

JCM

Yes (N = 20)	0 (0%)	0.0%
p-value	1	
Contact with ill people		
No (N = 1221)	20 (1.64%)	100.0%
Yes (N = 75)	0 (0%)	0.0%
p-value	0.6246	
Allergies		
No (N = 1127)	17 (1.51%)	85.0%
Yes (N = 171)	3 (1.75%)	15.0%
p-value	0.7394	
Asthma		
No (N = 1171)	18 (1.54%)	90.0%
Yes (N = 127)	2 (1.57%)	10.0%
p-value	1	
Chronic GI illness		
No (N = 1224)	18 (1.47%)	90.0%
Yes (N = 74)	2 (2.7%)	10.0%
p-value	0.3173	

589

590 FIGURE LEGEND

591 Figure 1

592 (A) Map of United States showing Puerto Rico. (B) Map of Puerto Rico showing

593 Boquerón Beach (white arrow). Images courtesy of Google maps: Map data

- 594 ©2020Google, INEGI for the US Mainland
- 595 (https://goo.gl/maps/wxUE7TQ7EW1DHXHU9) and Data LDEO-Columbia, NSF,

596 NOAA Data SIO, NOAA, U.S. Navy, NGA, GEBCO Landsat/Copernicus for the Map of

597 Puerto Rico (<u>t.ly/Wgcl</u>). Last Accessed 7/30/2020.

598

599 Figure 2

Augustine 25

Journal of Clinical Microbiology

Journal of Clinical <u>Microbio</u>logy

MO M Journal of Clinical Microbiology

JCM

	Rapid screening tool for hepatitis A infection.
600	Coupling confirmation of duplex HAV antigen and uncoupled control beads using goat-
601	anti-HAV polyclonal antibodies.
602	
603	Figure 3
604	Scatter plot of anti-HAV responses measured in Median Fluorescence Intensity (MFI)
605	units for all saliva samples analyzed (N=5438). Positive samples (MFI \geq cut-off) are
606	shown in red (N=849).
607	
608	Figure 4
609	Immunopositivity heatmap for study participants who returned all three samples
610	(N=1399). Red line denotes immunopositive samples (MFI \geq cut-off).
611	
612	Figure 5
613	Summary of HAV immunoconversions and reported chronic underlying conditions
614	(CUCs). (A) MFI response curves of the twenty (20) individuals who immunoconverted.
615	(B) Tree map of CUCs reported for individuals with HAB immunoconversions. The line
616	color/shading is used to denote individuals with (black) and without (gray) CUCs.
617	
618	
619	
620	
621	

Data LDEO-Columbia, NSF, NOAA Data SIO, NOAA, U.S. Navy, NGA, GEBCO Landsat/Copemicus

Journal of Clinical Microbiology

JCM

Journal of Clinical Microbiology Journal of Clinical Microbiology

JCM

S1				16.15%
<mark>52</mark>				15.44%
<mark>S3</mark>				15.44%

Downloaded from http://jcm.asm.org/ on August 10, 2020 by guest

Α

14000

12000

10000

8000

6000

4000

2000

0

None, 13

S1

MFI

S2

В