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Abstract: The primary goal of the present study is to provide a broad view of best practices for evaluating bioavailability
models for metals for use in the protection of aquatic life. We describe the state of the science regarding 1) the evaluation
and selection of ecotoxicity data, 2) the selection of bioavailability models for use in normalization, and 3) subsequent
application of bioavailability models. Although many examples of normalization steps exist worldwide, a scheme is proposed
to evaluate and select a model that takes account of its representativeness (water chemistry and taxonomic coverage of the
ecotoxicity data set) and validation performance. Important considerations for a suitable model are the quantity of inputs
needed, accuracy, and ease of use, all of which are needed to set protective values for aquatic life and to use these values to
evaluate potential risks to organisms in receiving waters. Although the end results of different model application approaches
may be broadly similar, the differences in these application frameworks ultimately come down to a series of trade‐offs
between who needs to collect the data and use the bioavailability model, the different requirements of spatial scales
involved (e.g., regional vs site‐specific values), and model predictiveness and protectiveness. Ultimately, understanding the
limits and consequences of these trade‐offs allows for selection of the most appropriate model and application framework to
best provide the intended levels of aquatic life protection. Environ Toxicol Chem 2020;39:118–130. © 2019 SETAC
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INTRODUCTION
Many jurisdictions have recognized the need to include con-

sideration of bioavailability in the derivation of protective values
for aquatic life (PVALs) for metals. (When describing established
regulatory precedents, the relevant term is used, for example,
“water quality criteria.” When referring to recommendations in
terms of future regulatory use of bioavailability models, we use
broad terminology regarding PVALs, which is synonymous with
guideline/water quality criteria/environmental quality standard
[EQS]/benchmark as used in various jurisdictions.) In the early
1980s, the United States demonstrated a progressive movement

away from single‐value criteria by recognizing the importance of
hardness as a toxicity‐modifying factor (TMF) for metals (Adams
et al. 2020). However, it was not until nearly 30 yr later that a more
comprehensive approach was incorporated into the derivation
process using the biotic ligand model (BLM; US Environmental
Protection Agency 2007). Europe demonstrated the biggest de-
parture from single‐value standards in the early 2000s by
adopting full BLM corrections while performing regional risk
assessments for some metals within the framework of the Euro-
pean Union Existing Chemicals Regulation and implementing
European Union–wide bioavailability‐based standards in 2010
for nickel under the Water Framework Directive. Australia/
New Zealand and Canada began updating their national guide-
lines for metals, including incorporation of other TMFs beyond
just hardness, after 2010.

Although there is common ground in the way different ju-
risdictions derive PVALs, there can be marked differences in the
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way they are subsequently used to assess risk or to set
permits. Two distinct regulatory options for the application of
bioavailability‐based approaches can be recognized using
either site‐specific or regional default values.

First, in some jurisdictions, especially those where regulatory
duties are delegated to local administrations, there is a ten-
dency toward using local or even site‐specific PVALs. Essen-
tially, the influence of water chemistry is dealt with in the effects
assessment (i.e., derivation or adjustment up or down of the
value itself). In the United States, “site‐specific” values can be
developed for a specific water body or segment receiving
more than one permitted discharge or developed as a single
discharge–specific criterion based on water chemistry charac-
teristics collected at the regulatory point of compliance (i.e.,
traditional application for hardness‐based values; Gensemer
et al. 2016).

Second, in other jurisdictions (e.g., many European coun-
tries), where some PVALs for metals (e.g., Ni, Pb, Cd) are de-
veloped and promulgated centrally across the whole of Europe,
there is a single regional default standard that is protective of
most waters. Under the Water Framework Directive which drives
regulatory standard development in Europe, the European
Commission publishes a single value for each standard (EQS;
European Commission 2018) for some metals. For metals that
are not considered European Union–wide challenges, countries
can set their own specific limits using the same methods (e.g.,
for Cu, Zn). In contrast to the first approach (i.e., site‐specific
PVALs), the approach under the Water Framework Directive is
to account for the influence of water chemistry through the
exposure (or monitoring data) side of the risk assessment. That
is, when assessing risk, the monitoring data must be adjusted to
reflect the bioavailability that would occur at the site under
consideration, and this is compared to the EQSbioavailable to
determine potential risk (i.e., “pass” or “fail”).

The science of metal bioavailability has advanced to the
point where a number of bioavailability models are available
with varying levels of complexity, sophistication, and ease of

use. In addition, the incorporation of TMFs into model devel-
opment has placed emphasis on nuances between the pro-
tectiveness (i.e., levels of conservatism, or the extent to which
conclusions err on the side of protecting the environment)
versus predictiveness (i.e., the extent to which toxicity is ac-
curately predicted) of bioavailability models and, hence, the
PVAL developed based on those models. However, the basic
process (i.e., framework) for use of bioavailability models has
remained relatively consistent, even as the science of bio-
availability has progressed.

The present study describes the state of the science re-
garding 1) the evaluation and selection of ecotoxicity data with
particular emphasis on measured metal concentrations and
water chemistry parameters, 2) the selection of bioavailability
models for use in normalization, and 3) considerations
for model application based on data availability, spatial scale,
and model predictiveness and protectiveness. We build on
existing frameworks to incorporate bioavailability models that
enable users to normalize ecotoxicity data for the purpose of
derivation and application of PVALs. Although the primary
focus of the present study is on the framework in the United
States (Stephen et al. 1985), best practices internationally from
other jurisdictions are also included to provide the end user
with a broad view of the options for regulatory application
of PVALs for aquatic life for metals that are derived using
bioavailability models.

CONCEPTUAL FRAMEWORK FOR USE OF
BIOAVAILABILITY MODELS

Figure 1 illustrates a conceptual framework with respect to
how bioavailability models could be used in both the derivation
and application of acute and chronic PVALs for metals. This
framework is based on the derivation process set forth in the
US Environmental Protection Agency's (USEPA's) guidelines
(Stephen et al. 1985). However, the proliferation of other,
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FIGURE 1: Conceptual model for use of bioavailability models. HC5= 5% hazardous concentration; CCC= criterion continuous concentration;
CV= chronic value.
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broadly similar frameworks around the world suggests that
there are many aspects in common, so this framework has value
beyond the United States.

This framework assumes that all bioavailability models ad-
just aquatic toxicity on the basis of external water chemistry
characteristics known to control metal bioavailability (Adams
et al. 2020). The regulatory use of these models occurs in
2 steps: 1) normalization, and 2) application (Figure 1). “Nor-
malization” is defined as the use of the bioavailability model to
predict and adjust toxicity values used to populate the species
(genus) sensitivity distributions (SSDs) from which the 5% haz-
ardous concentration (HC5; 5th percentile of the SSD) is cal-
culated. This HC5 forms the technical basis of the regulatory
PVAL. The normalization process is an important component of
PVAL development, to 1) reduce intraspecies variability when
multiple studies exist that represent a spectrum of water quality
conditions, 2) order/rank species sensitivity in the SSD relative
to differences in bioavailability among species, and 3) adjust
the magnitude of the HC5 relative to the index condition
chosen (e.g., user‐defined protection goals, expressed as a
combination of water chemistry parameters that determine
bioavailability). Application is the way in which PVALs are
modified relative to water chemistry conditions specified for
regional (Europe), national, or site‐specific interests.

Normalization framework
Guidance from the USEPA describes the steps for in-

corporating relationships between toxicity and one or more
TMFs (Figure 2). Corresponding guidance for other jurisdictions
is found elsewhere (e.g., European Commission 2011;

Organisation for Economic Co‐operation and Development
2016). If analysis does not indicate that TMFs are important for
a metal, then individual toxicity data that have passed quality
assurance standards can be aggregated without normalization
prior to SSD construction and HC5 derivation for a final PVAL. If
analysis instead suggests that TMFs are important, then all
appropriate and validated bioavailability models are consid-
ered for selection and use for normalization. If a bioavailability
model has not been developed but one or more TMFs are
known or suspected, the ecotoxicity data may be used to in-
vestigate modeling options (Figure 2; Brix et al. 2020; Mebane
et al. 2020; Garman et al. 2020).

In addition, the procedures for evaluating acceptable eco-
toxicity data must include an additional check for how well a
model represents 1) the water chemistry conditions it is in-
tended to represent, and 2) the types of taxa used in studies to
populate the SSD. A selected bioavailability model(s) can then
be used to normalize individual toxicity values for which suffi-
cient water chemistry data are available or can be estimated.
Because of inevitable deficiencies in water chemistry reporting
needed to populate more sophisticated models (see section
Evaluation of Acceptable Ecotoxicity Data for Use in a Nor-
malized SSD) or a model's representation of species in the SSD
(see section Model Evaluation and Selection), the process of
data set evaluation and model selection should include regular
reassessments as information regarding the importance of
water chemistry on toxicity evolves.

Application framework
In the United States, a model‐based PVAL is typically ex-

pressed not as a numerical value but as the model used to
modify the HC5 for a given site water, leading to application of
the suitably modified PVAL in permitting or assessment as
implemented at the state level (Figure 1). In other jurisdictions
(European Commission 2018), the regulatory PVAL (e.g.,
EQSbioavailable) may instead be expressed as a threshold metal
concentration relative to a specified index condition, rather
than the model. Whereas the end results can be similar, dif-
ferent spatial scales and data needs influence how the models
are ultimately applied (discussed further in section Model
Evaluation and Selection).

EVALUATION OF ACCEPTABLE
ECOTOXICITY DATA FOR USE IN A
NORMALIZED SSD

Prior to any normalization, ecotoxicity data from single‐
species laboratory toxicity tests need to be assessed for data
reliability and relevance for use in the SSD. In this respect,
metal toxicity data are no different from data for any other
substances, but some metal‐specific issues are highlighted in
the present section. In the United States, acceptable data‐
quality indicators (or selection criteria) identified by Stephen
et al. (1985) have been used for this purpose. Since then,
several new approaches have been developed, including the
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FIGURE 2: General framework for normalization of toxicity data using
bioavailability models. HC5= 5% hazardous concentration; SSD=
species sensitivity distribution; TMF= toxicity‐modifying factor; WQ=
water quality.
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Klimisch system (Klimisch et al. 1997) and the criteria for re-
porting and evaluating ecotoxicity data (Moermond et al.
2016). Studies are evaluated on both reliability (i.e., the in-
herent quality of the data resulting from the method used to
conduct the test) and relevance (i.e., the extent to which the
test provides useful information about the hazardous proper-
ties of a chemical), with no distinction between metal and
nonmetal toxicants. Metal‐specific guidance is provided by the
Organisation for Economic Co‐operation and Development
(2016). In Australia and New Zealand, different defined lists of
acceptable quality assurance are applied to different types
of data depending on the environmental medium (freshwater
or marine/estuarine), type of toxicant (metal or nonmetal), and
type of test organism (plant or nonplant; Warne et al. 2015;
Gissi et al. 2016). Additional acceptable quality assurance
measures apply when mesocosm or field data are used.

Field‐based and micro‐/mesocosm studies may provide a
more direct measure of endpoints that regulators strive to
protect. They may also provide a wider range of toxicity end-
points, including nontraditional endpoints for single species
within the community and population/community endpoints,
thereby potentially improving the environmental relevance of
PVAL derivation and application for metals. There are also
challenges associated with the use of micro‐/mesocosm
studies, including controlling test conditions and resource
constraints on experimental replication, because of the greater
complexity of the systems relative to single‐species laboratory
toxicity tests. Australia and New Zealand have long permitted
the use of micro‐/mesocosm data and field data, in combina-
tion with laboratory data, in SSDs to derive PVALs (Australian
and New Zealand Environment and Conservation Council and
Agriculture and Resource Management Council of Australia
and New Zealand 2000). In Europe, Australia, New Zealand,
and the United States, these studies can be used as additional
lines of supporting evidence in weight‐of‐evidence assess-
ments of laboratory‐derived PVALs (European Commission
2011, 2018; Warne 2001), provided that the resulting data
meet certain quality conditions. Data acceptability require-
ments specific to micro‐/mesocosm data and field data are
summarized in Supplemental Data, Table S1 (modified from
Warne et al. 2015).

Metal analysis, speciation, and solubility
Considerations regarding the chemical form of metal used

and measured in ecotoxicity tests that should be recognized
when determining overall data acceptability are outlined in the
present section, with more detailed guidance provided in the
Supplemental Data.

Metal analysis. Use of nominal metal concentrations in eco-
toxicity tests is no longer recommended because of loss of
metals to test containers and to test organisms over the dura-
tion of the test (Franklin et al. 2002). Organism loading, in
particular, can change the metal speciation in solution in static
tests, and hence alter metal bioavailability and toxicity. For
PVAL development purposes, most jurisdictions recognize the

importance of using only measured metal concentrations;
however, exceptions occur for data‐poor species or when there
is evidence that all metal is in solution.

In the United States, PVALs for metals were originally based
on total recoverable metal, with a hardness correction. In 1993,
it was recognized that dissolved metal is generally a better
predictor of effects, with the exception of aluminum (Prothro
1993), although neither total nor dissolved metal measure-
ments take into account the dietary route of exposure. Some
exceptions, where total metal rather than dissolved metal is
used for derivation of PVALs, include aluminum (US Environ-
mental Protection Agency 2018) and iron (Australian and
New Zealand Governments 2018a). Because most jurisdictions
previously allowed total metal measurements in ecotoxicity
tests, approaches were needed to convert total metal to
dissolved metal to enable the use of these older data in
derivation or application. These approaches have included
1) estimating solubility products to calculate metal speciation,
and 2) undertaking experiments to determine the fraction of
total metal present as dissolved metal. However, as shown in
the Supplemental Data, conversions between total and dis-
solved metal concentrations are of limited reliability and will
introduce a level of uncertainty into derivation or any regulatory
applications based on these types of data. We recommend that
only measured metal concentrations be used in the derivation
of PVALs, with preference for dissolved metal concentrations
over total metal concentrations.

Metal speciation and equilibration. Metals in the dissolved
phase can be in a variety of chemical forms (species), which
depend on site‐specific water chemistry. Therefore, the use of
dissolved metal concentrations does not distinguish between
the toxic effects of the different dissolved metal species. This
would require additional knowledge of metal speciation,
potency of different species, and availability of analytical/
computational techniques and would not account for other
geochemical interactions among major ions and organic frac-
tions. It is also now well established that the toxicity of metals
to different taxa is not always attributable to the same metal
species (e.g., bioavailability of CuOH+ and CuCO3; US Envi-
ronmental Protection Agency 2007).

Bioavailability models such as BLMs assume pseudoequili-
brium between bulk water species and the biotic ligand. At the
very low metal concentrations in chronic studies (and in typically
occurring natural waters), kinetic control may be more important
(i.e., the rate‐limiting step may be slow diffusion of the metal from
solution, rather than uptake into the organism; US Environmental
Protection Agency 2007). However, normalization by extension
also assumes equilibrium has been achieved, but test solutions
may have higher bioavailability than the equilibrated dilution. Pre‐
equilibration of the metal in the test medium for 24 h before
adding the organisms is one way to reduce the problems of
nonequilibrium (Ma et al. 1999; Organisation for Economic
Co‐operation and Development 2016).

Metal solubility. Regulatory documents usually specify what
metal salts are acceptable for ecotoxicity data used to derive
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PVALs (e.g., US Environmental Protection Agency 1994). Al-
though ecotoxicity data at metal concentrations above sol-
ubility limits were previously used, more recent guidelines, for
example, in Australian and New Zealand and in Europe, reject
concentrations more than twice the metal solubility limit
(Warne et al. 2015; European Commission 2018). This is be-
cause of concerns over unknown effects of colloids and pre-
cipitates, potentially resulting in over‐ or underestimation of
toxicity when solubility limits are exceeded. For example, using
data from tests where the metal solubility limit is exceeded can
distort the upper end of the SSD, leading to unreliable HC5
estimates. This may not be the appropriate approach, however,
in cases where colloids or precipitated metal have toxicological
significance such as for aluminum and should be addressed
(Gensemer et al. 2018; US Environmental Protection Agency
2018). More information on metal solubility is provided in the
Supplemental Data.

Water chemistry parameters
The process of normalizing toxicity test results or applying a

model for derivation purposes requires that each study has re-
ported water chemistry data suitable for applying the chosen
bioavailability model. The reported water chemistry data should
also be critically evaluated to determine uniformity with model
requirements. Results from such an evaluation typically dem-
onstrate that many studies/species (normalization) or monitoring
data (application) may be rejected because of lack of required
data inputs for modeling (e.g., dissolved organic carbon [DOC]
data are typically lacking). For example, approximately 30% of
otherwise acceptable studies were rejected as part of the data‐
screening process for developing the BLM‐based criterion for
copper (16 fewer genera and 18 fewer species than the previous
criterion; US Environmental Protection Agency 1995, 2007).

As a result, approaches for estimating missing water
chemistry parameters have been developed to address defi-
ciencies encountered in both the normalization and application
procedures. For the purpose of filling missing water chemistry
data in the ecotoxicity data set, methods have included 1)
personal communication with authors for newer analyses of
water sources, 2) calculation of major ion concentrations from
recipes for standard reconstituted laboratory waters, and 3)
empirical estimation of concentrations of major ions from one
or more known parameters (calcium concentrations or con-
ductivity) for tests using natural water (e.g., Peters et al. 2011;
US Environmental Protection Agency 2016). Similarly, for the
purpose of filling in missing data for an otherwise complete
input parameter or monitoring data set, existing national water
chemistry databases can be used to develop and refine dis-
tributions. For example, the USEPA compiled water chemistry
data for thousands of sites using publicly available information
from the US Geological Survey's National Water Information
System and National Organic Carbon Database (US Environ-
mental Protection Agency 2016). For some critical parameters,
notably pH and DOC concentration, it has been recommended
that these are preferably measured, rather than estimated
(Peters et al. 2011; US Environmental Protection Agency 2016).

Differences between water chemistry ranges/boundaries
for the ecotoxicity data set and chosen bioavailability model
must also be evaluated for uniformity. Bioavailability models
are typically calibrated and validated to cover a certain range
of water chemistry, for instance, the 10th to 90th percentile
of the distribution of TMFs for a region. For the purposes of
normalizing an ecotoxicity data set, reported TMF values for
tests with water chemistry outside the model validation
range should be used and interpreted with caution (Garman
et al. 2020). Water chemistry data from monitoring programs
falling outside of model boundaries may suggest the need
for further model refinement to account for unique water
chemistry conditions.

MODEL EVALUATION AND SELECTION
Given the availability of a variety of bioavailability models

(Table 1), a process is needed for selecting the most appro-
priate model(s) for normalization. Whereas model evaluation
and selection should be primarily guided by how well the
model reflects the mechanistic understanding of chemical
speciation and toxicity, the types and choice of model can also
depend on how they are intended to be applied. The most
acceptable model (or models) for normalization and application
will depend on several considerations.

Representation. Evaluating the representativeness of a
model's water chemistry and taxonomic coverage of the eco-
toxicity data set to which normalization would be applied. This
should also include an evaluation of whether water chemistry
input parameters are within model derivation or validation
boundaries.

Level of input. Accounting for the water chemistry data input
requirements.

Accuracy. The ability of the model to predict toxicity, as
documented by the model calibration and validation studies.

Ease of use. A critical consideration in terms of effort and
resource needs, required levels of expertise in operation and
interpretation of outputs, software compatibility with current
systems, and dovetailing of model outputs to the regu-
latory use.

Normalization procedure
The operational procedures for normalizing acceptable eco-

toxicity data sets have evolved since the early 1980s as a result
of 1) an improved understanding of the influences of water
chemistry parameters on the aquatic toxicity of metals, and 2)
the amount of additional research published for new and ex-
isting species that could be considered in the standard devel-
opment process. For example, a compilation of normalization
procedure summaries, used in Australia and New Zealand,
Canada, Europe, and the United States over the last 40 yr,
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illustrates a range of priorities related to model ease of use and
taxonomic representation in the SSD (Table 1).

A central challenge to the use of complex bioavailability
models (e.g., BLMs and multiple linear regressions [MLRs]) is
that direct application to all species in the SSD may not be
possible because 1) the model was either developed using, or
validated for, only a small number of widely tested species
(e.g., algae, daphnids, rainbow trout) not representative of the
taxa in the SSD; or 2) several studies have missing water
chemistry parameters needed to run bioavailability models.
Therefore, 2 approaches have been developed for normalizing
a full SSD that recognize potential differences in water chem-
istry influences for some species and/or lack of necessary water
chemistry measurements.

First, Europe (European Commission 2011, 2018) prescribes
the use of trophic‐level models in the normalization process. It
is assumed that all species data within the SSD would best be
normalized using the model with the most specificity for its
taxonomic group. However, for some species that have con-
siderable divergence from the species for which a model was
developed (e.g., amphibians or higher plants), all available
models may be evaluated to determine if one better describes
influences on toxicity than another.

Second, hybrid normalization using both a hardness‐based
equation and a BLM has been used to account for the lack of
necessary water chemistry measurements (DeForest and Van
Genderen 2012). The intent was to retain taxonomic diversity in
the SSD (to satisfy minimum data requirements) because all
necessary water chemistry parameters were unavailable for
some (older) data‐poor species. Further, DeForest and Van
Genderen (2012) focused their attention on characterizing
water chemistry parameters from species in the lower 20th or
50th percentile of the acute or chronic species mean dis-
tributions, respectively, because the HC5 calculation empha-
sizes the lowest 4 genus mean values (Stephen et al. 1985). In
concept, a hybrid normalization could be constructed using
any combination of models, assuming that the procedure still
conforms to the jurisdictional requirements for data selection.

Choosing an index condition
A final step in the normalization process that can be taken is

calculating an HC5 for the ecotoxicity data set using a specified
combination of water chemistry parameters (referred to as the
“index condition” hereafter). The index condition is used as a
simple point of reference in some jurisdictions and as a regu-
latory benchmark in others. In the United States, the criterion is
represented by the model developed and used for normal-
ization and subsequent calculation of the HC5. An index con-
dition is only reported in US criteria documents as a point of
reference relative to previous criteria under a common water
chemistry condition. In other jurisdictions, the index condition
chosen may depend on the intended management goals and
level of conservatism.

As a result, the specified index condition may not always
represent a known site condition, the exception being the
European Union which uses a natural water composition for the

index condition. To this end, the most scientifically defensible
approach for defining an index condition should involve eval-
uating distributions of measured water chemistry conditions
throughout the region of interest to help define management
goals. Such an approach allows water quality managers to
identify a complete water chemistry condition that is repre-
sentative of natural composition and water chemistry param-
eter relationships for setting an index condition.

Model selection
The choice of models has historically been based on user

decisions related to levels of conservatism and ease of use,
rather than on model performance. However, although there
are some correlations between model performance (i.e., ac-
curacy as reflected in reduced uncertainty and a higher degree
of confidence in predictions) and level of input or ease of use,
there are also exceptions. For example, traditional single‐
parameter models for metals are easy to use but demonstrate
marginal performance when applied (providing the motivation
to move away from a hardness‐based model for copper).
Conversely, some simplified (user‐friendly) models reduce
input and computational output from full BLM simulations and
streamline the user interface while preserving modeling per-
formance (Table 2). These tools are aimed at reducing resource
demands while ensuring that readily interpretable outputs are
consistent with full BLM predictions (e.g., Environment Agency
2009, 2010, 2012a, 2012b, 2013; Rüdel et al. 2015). Similarly,
although MLRs and BLMs have variable data needs and levels
of complexity for the user, both provide increased confidence
in predictions over simple hardness‐based models (Table 2).

Typically, MLRs require fewer water chemistry input data than
BLMs, which require relatively large data inputs and technical
understanding, making them more complex and time‐
consuming to use in a regulatory context. Although common
concerns associated with application of bioavailability‐based
PVALs have been to model complexity and data needs (e.g., up
to 16 water chemistry parameters required) for routine use by
regulators and stakeholders, the models are considered robust,
scientifically advanced, and accurate (e.g., Schlekat et al. 2010).
Despite attempts to simplify BLM input requirements, outputs
often require some interpretation before they can be applied in
regulatory frameworks.

There could be a perceived trade‐off between reduced
input requirements, model complexity, mechanistic basis, and
potential loss of accuracy of predictions. However, recent re-
search indicates that the complex (BLM) and more simplified
(MLR and user‐friendly) models can produce very similar results

© 2019 SETAC wileyonlinelibrary.com/ETC

TABLE 2: Among‐model comparison relative to accuracy, level of
input, and ease of use

Type of model Accuracy Level of input Ease of use

Single‐parameter Low Low High
MLR High Moderate High
BLM High High Moderate
Simplified High Moderate Moderate

BLM= biotic ligand model; MLR=multiple linear regression.
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across a range of water chemistry conditions, providing results
within the standard plus or minus a factor of 2 of observed
results (Brix et al. 2017). The relative importance of this appa-
rent trade‐off may be dependent on the regulatory framework
in use, with higher levels of complexity and performance
needed in some instances to support decisions. Furthermore,
the acceptance of potential loss of accuracy can vary de-
pending on the application. If a model is too complex for its
intended user community, it is unlikely to be used. Simplified
tools are only simple in terms of the user interface and input
requirements when compared to BLMs yet retain complexity
with respect to bioavailability calculations. That said, although
simplified tools account for factors that impact bioavailability,
the technical complexity and extent of TMFs that are taken into
account are also reduced in relation to the full BLMs. For ex-
ample, although MLRs and user‐friendly BLMs may have re-
duced inputs and complexity relative to full BLMs, all require
the same level of interpretation in the application process (e.g.,
spatial and temporal coverage of the PVAL).

In Europe, the applicability and validity ranges of the simplified
tools are defined by the BLMs on which they are based and that
they mimic. Peters et al. (2016) reviewed the scientific under-
pinning and performance of 2 simplified tools (Bio‐met and
PNEC‐pro), with respect to comparison to the Ni‐BLM, and offered
recommendations for interpreting the results of such analyses.

Case study
The following bioavailability model evaluation and selection

procedure is presented as an example of how a user might
objectively review available models for use in the normalization
process. All data are provided in the Supplemental Data. This
example is meant to be illustrative and admittedly uses a metal
(zinc) that is data‐rich and has different modeling formats for
consideration. The procedure only applies to the model se-
lection process and does not attempt to derive a zinc PVAL
from the findings.

The data set selected represents only chronic ecotoxicity
studies passing test acceptability in Europe for algae, in-
vertebrates, and fish. The compilation of studies is represented in
the user‐friendly BIOMET tool (available at http://bio‐met.net/).
The models chosen for evaluation are represented by 1) USEPA
hardness‐based species equations (US Environmental Protection
Agency 1987); 2) Canadian Council of Ministers of the Environ-
ment Zn‐MLR equations for algae (MLR1), Daphnia magna (MLR2),
and rainbow trout (MLR3; Canadian Council of Ministers of
the Environment 2018); and 3) BLMs for algae (Van Regenmortel
et al. 2017) or aquatic invertebrates and fish (DeForest and
Van Genderen 2012).

For each model, the evaluation process involved 7 steps. 1)
Scoring based on reported metal fractions (e.g., 2= dissolved,
1= total, 0= nominal). This is not used here because of the
ecotoxicity data set having measured dissolved metal con-
centrations reported for all tests. Scoring of endpoint or ex-
posure duration relevance could also be considered. 2) Scoring
the representativeness of water quality coverage. Relative to
the range of water quality used in model calibration, a score of

1 was assigned for ecotoxicity tests with water quality reported
within the model boundaries and 0 for water quality outside the
model boundary range. 3) Scoring the representativeness of
taxonomic coverage. Relative to the species represented by
the model calibration and validation, each test was assigned a
scaled score based on a within‐biological organization com-
parison: 0 (outside kingdom), 1 (kingdom), 2, (phylum), 3 (class),
4 (order), 5 (family), 6 (genus), 7 (species). 4) Water quality and
taxonomic coverage scores were summed for each test and
qualified as “good” (score= 6–8), “fair” (score= 3–5), or
“poor” (score= 0–2). These scores were then summed for each
trophic level and summed overall. 5) Scores were developed,
using residual factors (RFs), to characterize the performance of
each model at the species level, using a validation data set
(DeForest and Van Genderen 2012). That is, each model was
validated against all currently available ecotoxicity data for
species represented by the model. Although the species and
number of predictions differ among models, this procedure
optimizes the performance evaluation for each model. Residual
factors were calculated for each test as the maximum divided
by the minimum value of predicted or observed toxicity, then
plotted as cumulative distributions for each model and eval-
uated by calculating the RFx,Factor which is the percentage of
predictions associated with a chosen RF. Factor= 2.0 in the
example focuses on all predicted toxicity falling within a factor
of 2 of the observed toxicity. Higher factors indicate poorer
agreement between predicted and observed toxicity. Or the
1/RFy,% or the reciprocal RF associated with a chosen prediction
accuracy. Percentile= 0.84 in example as equivalent to
1 standard deviation. The higher the reciprocal score, the more
accurate the prediction. Note: Untransformed residuals (pre-
dicted toxicity divided by observed toxicity) should also be
plotted and assessed to qualitatively identify tendencies for
under‐ or overprediction of a model with the chosen data set.
6) The number of “good” scores for each trophic level and the
overall scores were multiplied by RFx or 1/RFy to obtain relative
scores. 7) Finally, relative scores were ranked (rank 1 is the best)
by trophic level and overall to determine if qualitative con-
clusions could be drawn concerning model representativeness
for the ecotoxicity data set.

A summary of results from the evaluation process is shown in
Table 3. The water quality evaluation did not demonstrate
much differentiation among models, for all trophic levels
(step 2). As a result, taxonomic coverage of a model (step 3),
relative to water quality in the ecotoxicity data set, produced
the greatest representative scoring differences (step 4;
Table 3). The BLMs consistently scored high for all trophic
levels and overall. However, the hardness model contained
slightly more diversity across fish species, and the BLMs con-
tained slightly more diversity across invertebrates. Because the
MLRs were developed at the species level, overall scores are
only representative of a single trophic level. In cases where
reported water quality for toxicity studies was absent, missing
parameter approaches could be applied (step 1 or 2). Similarly,
model refinement and/or extended taxonomic coverage could
be considered to improve model performance (e.g., generate
pooled MLR from examples provided here).

wileyonlinelibrary.com/ETC © 2019 SETAC
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Model performance following validation with all currently
available ecotoxicity data for respective species produced a
clearer comparison among models. That is, each model was
used to make predictions for all available ecotoxicity data
represented by the model, including data used for model cal-
ibration. Prediction accuracy at an RF of 2 (RFx,2.0) ranged from
19% for hardness, 33 to 70% for MLRs, and 87% for BLMs; and
the RF associated with 84% prediction accuracy (1/RFy,0.84)
ranged from 0.0078 for hardness, 0.18 to 0.41 for MLRs, and
0.53 for BLM (Figure 3). Because of the large differences be-
tween performance metrics among models, relative scores for
the BLM were 1.2‐fold to 93‐fold higher than for other models.
A final ranking of models illustrated that the BLM best repre-
sented the ecotoxicity data set and demonstrated prediction
accuracy for all trophic levels and overall. Other models each
have strong representation for certain trophic groups and
could be limited in their application.

REGULATORY APPLICATION OF
BIOAVAILABILITY‐BASED PVALs

This section focuses on the regulatory application of bio-
availability‐based PVALs to 1) assess receiving water quality (to
help identify where management action is needed) and 2) set
discharge permits on known point sources (e.g., municipal
wastewater or industrial discharges). Table 1 summarized those
regulatory jurisdictions which are known to have applied
bioavailability‐based models for regulatory purposes. The dif-
ferences in these application frameworks ultimately result in a
series of trade‐offs between who needs to collect the data
and run the bioavailability model, the different requirements
of spatial scales involved, and model predictiveness and

protectiveness (Figure 4). For example, selecting a regional
default PVAL would require relatively little effort by the permit
holder but relatively greater effort by the regulatory agency.
The opposite would be true for an individual location‐specific
permit.

Although many issues of application are common to other
hazardous chemicals (like choice of sampling locations, sam-
pling frequency, confidence of compliance), some issues are
specific to bioavailable metals or assume a particular im-
portance. These include 1) spatial and temporal variability in
the TMFs that affect bioavailability (and hence toxicity), 2) re-
solving missing water chemistry data (see section Evaluation of
Acceptable Ecotoxicity Data for Use in a Normalized SSD), and
3) applying tiered approaches, including screening tools, to
facilitate the assessment process when there are large numbers
of sites or samples.

Spatial and temporal variability in
water chemistry

Surface water chemistry conditions vary on both a spatial
and a temporal basis in response to physical, chemical, and
biological processes. The relative importance of different TMFs
depends on the metal, but for most metals, DOC is the most
critical TMF. However, to establish PVALs for metals, water
chemistry conditions at a site should be well characterized,
especially the conditions that influence metal bioavailability.
This characterization often involves a robust sampling program,
which should be designed to avoid bias resulting from tem-
poral and spatial variability in water chemistry (e.g., seasonal
effects on pH or spatial variation in DOC).

Temporal changes in metal bioavailability can be influenced
by 2 factors. First, seasonal influences on water composition

© 2019 SETAC wileyonlinelibrary.com/ETC

TABLE 3: Summary of model evaluation and selection process for a case study with zinc

Model Scoringa Model performanceb Relative scoresc Model rankd

Hardness Fish= 33 RFx,2.0= 0.19 Fish= 6.3 (0.26) Fish= 3
Invertebrate= 40 1/RFy,0.84= 0.0078 Invertebrate= 7.6 (0.31) Invertebrate= 3

Algae= 0 Algae= 0 (0) Algae= 3
Overall= 73 Overall= 14 (0.57) Overall= 4

MLR1 Fish= 0 RFx,2.0= 0.33 Fish= 0 (0) Fish= 4
Invertebrate= 0 1/RFy,0.84= 0.18 Invertebrate= 0 (0) Invertebrate= 4

Algae= 26 Algae= 8.6 (4.8) Algae= 2
Overall= 26 Overall= 8.6 (4.8) Overall= 4

MLR2 Fish= 0 RFx,2.0= 0.64 Fish= 0 (0) Fish= 4
Invertebrate= 40 1/RFy,0.84= 0.41 Invertebrate= 25.6 (16.3) Invertebrate= 2

Algae= 0 Algae= 0 (0) Algae= 3
Overall= 40 Overall= 25.6 (16.3) Overall= 2

MLR3 Fish= 22 RFx,2.0= 0.70 Fish= 15.4 (6.3) Fish= 2
Invertebrate= 0 1/RFy,0.84= 0.29 Invertebrate= 0 (0) Invertebrate= 4

Algae= 0 Algae= 0 (0) Algae= 3
Overall= 22 Overall= 15.4 (6.3) Overall= 3

BLM Fish= 22 RFx,2.0= 0.87 Fish= 19 (12) Fish= 1
Invertebrate= 53 1/RFy,0.84= 0.53 Invertebrate= 46 (28) Invertebrate= 1

Algae= 26 Algae= 23 (14) Algae= 1
Overall= 101 Overall= 88 (53) Overall= 1

aTotal of “good” scores summed for water quality and taxonomic coverage for each test, trophic level, and overall (step 4; see text).
bRFx,2.0= percent of predictions within a factor of 2.0; 1/RFy,0.84= residual factor associated with 84% model accuracy (step 5; see text).
cProduct of RF and evaluation score (step 6; see text). Results presented as RFx (1/RFy).
dAmong‐model ranking (step 7; see text).
BLM= biotic ligand model; MLR=multiple linear regression; RF= residual factor.
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(DOC, Ca, Mg, and pH) may fluctuate in their magnitude (rela-
tive to average) or relationship to each other over the course of a
year. Consequently, the bioavailability of a metal may be highly
variable throughout the year. Second, worst‐case conditions
where the metal is most bioavailable are normally assumed to
occur under low‐flow conditions, largely because effluent flows
(and concomitant pollutant loads) will be largest relative to re-
ceiving water flows. However, for some TMFs, such as DOC,
low‐flow events dominated by effluents would predictably in-
clude higher organic contributions (and, thus, lower metal bio-
availability) than during high‐flow events. Furthermore, because
different TMFs may exhibit different flow‐dependency patterns
(e.g., DOC vs pH or hardness), most conservative or “critical”
conditions may be more challenging to identify a priori.

By anticipating variability in water chemistry from estab-
lished monitoring programs, the frequency of sampling may be
refined to account for temporal changes. For example, if a site
experiences seasonal variability and flow conditions, a sam-
pling program that relies on more frequent sampling dispersed
over the year may be indicated. However, if initial sampling

wileyonlinelibrary.com/ETC © 2019 SETAC

FIGURE 3: Residual factor plots (see text) for models used in case study. BLM= biotic ligand model; CDF= cumulative distribution function;
MLR=multiple linear regression.

FIGURE 4: Example application framework in United States. “Pre-
dictiveness” refers to precision of model predictions relative to water
quality at a particular location. “Protectiveness” refers to levels of
conservatism. “Permit data needs/effort” refers to how much data‐
collection or model‐calculation effort would be required by an in-
dividual permit holder. “Regulator data needs/effort” refers to how
much data‐collection or model‐calculation effort would be required by
the regulatory agency.
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shows a site has consistent water quality conditions across
seasons and flow conditions, the sampling frequency may be
relaxed without loss of accuracy. Until anticipated trends in
water chemistry can be characterized, a minimum of monthly
samples taken over a 1‐ to 2‐yr period would help to establish
variability patterns to refine future sampling needs (Gondek
et al. 2018). Variability in concentrations of the metal itself can
also influence probabilities of exceeding bioavailability‐based
criteria calculations, particularly when using a probabilistic
method (Ryan et al. 2018).

Spatial considerations may also affect metal bioavailability
in 2 ways. First, spatial variability in water chemistry within
catchments can be common, and the extent of that variability
can be analyzed from historic data and can help determine the
appropriate spatial scale for regulatory monitoring. Ideally,
water chemistry and metal concentration data for a given
sampling location should be collected at the same time, in the
same sample. Second, water chemistry, and hence metal
bioavailability, can change as effluent mixes with receiving
water downstream through a catchment. This is of particular
relevance to the larger waterways where the geochemical
characteristics may be modified locally by tributaries or mul-
tiple inputs of municipal, agricultural, or industrial wastewaters.
For the purposes of application for permitting processes, both
upstream and downstream sites from the discharge should be
sampled.

Tiered approaches for model application
Tiered assessment schemes can be useful when large

numbers of sites require assessment and it would be helpful to
develop assessment priorities. This is useful to direct resources
to sites where there is a potential risk and where further analysis
may be warranted. Furthermore, tiered regulatory application
frameworks may be helpful in addressing the lack of consistent
availability of TMF data required for more complex bioavail-
ability models such as MLRs or BLMs.

Tiered assessment schemes are particularly useful when a
single PVAL is used that is normalized to a water with charac-
teristics that represent a conservative condition of high bio-
availability (such as those used in Europe for nickel and lead)
and arguably only justifiable when its conservatism has been
demonstrated. The application of such a PVAL within a tiered
approach is consistent with classic risk‐assessment paradigms
in that early tiers of assessment are most conservative but
simple to perform with large numbers of sites (because data
requirements are low). The intention is to screen out low‐risk
sites during early tiers of assessment. As progress is made
through the assessment tiers, the data and calculation re-
quirements increase; but this effort is restricted to sites where
metals potentially pose the greatest risk.

An example of a tiered approach to assessment (Merrington
et al. 2016), which is briefly described, represents the current
state of practice in the United Kingdom. It suggests a logical
process that might have value for other jurisdictions (e.g.,
Oregon's tiered criteria derivation approach for the copper
BLM; Oregon Department of Environmental Quality 2017).

Tier 1. Direct comparison of the concentration from mon-
itoring data (dissolved metal) with the standard. The standard
used for comparison with monitoring data must be demon-
strated as conservative, to ensure that high‐bioavailability sites
are not erroneously screened out at this step. Sites, or samples,
exceeding the standard at this tier progress to the second tier
of the assessment.

Tier 2. Account for bioavailability using site‐specific water
chemistry data. Ideally, this tier of the assessment could make
use of an MLR, a full BLM, or a simplified tool for calculating the
local metal bioavailability.

Tier 3. Provides an opportunity for “local refinement” to
consider local issues that might affect the assessment of risk
attributable to metals. For example, local background con-
centrations of metals, which may have prompted resident or-
ganisms to develop a tolerance to elevated trace metal
concentrations, could be investigated as a factor requiring
model calibration or refinement. Continued failure (defined
impairment) of a site to meet the standard at this tier would
suggest candidacy for risk‐reduction measures.

CONCLUSIONS
A conceptual framework has been developed to assist users

of bioavailability models for various risk‐assessment applica-
tions needed to establish PVALs and support regulatory activ-
ities for metals. Once ecotoxicity data have been selected and
evaluated, a scheme is proposed to evaluate and select the
appropriate validated model(s) for use in deriving the PVAL.
The model selection process should include evaluations for
representativeness (water chemistry and taxonomic coverage)
relative to the ecotoxicity data set and model performance.
Hybrid normalization may be necessary to account for potential
differences in water chemistry influences for some taxa and for
lack of necessary water chemistry measurements for data‐poor
species. Final model selection should be based on data and
model input needs, model predictiveness and protectiveness,
and ease of use, both in deriving PVALs for metals and
subsequently for when these values are applied to assess risks
in receiving waters. Ultimately, trade‐offs between model
complexity, data needs, and ease of use and interpretation may
need to be considered to ensure that the selected model
represents the appropriate balance between model perform-
ance with respect to toxicity predictions and the levels of
protection afforded by any given regulatory jurisdiction.

Supplemental Data—The Supplemental Data are available on
the Wiley Online Library at DOI: 10.1002/etc.4559.
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