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Abstract 
Background 

Children’s exposures to chemical and non-chemical stressors from their everyday environment affects their overall health and well-being. American Indian/Alaska Native (AI/AN) children may have a disproportionate burden of stressors from their built and natural environments when compared to children from other races.

Objectives

We identified chemical and non-chemical stressors from AI/AN children’s built and natural environments and evaluated linkages between stressors and health and well-being outcomes.

Methods

Library databases (e.g., PubMed) were searched to identify studies focused on stressors from the built and natural environments. References were excluded if they: did not discuss AI/AN children or they were not the primary cohort; discussed Tribes outside the U.S.; were reviews or intervention studies; or did not discuss stressors from the built or natural environments.

Results

Out of 2,539 references, 35 remained. Sample populations were mainly from rural or isolated settings. Fifteen studies shared the same cohort. All 16 studies reporting built environment stressors were from households. Primary built environment stressors were indoor use of wood for heating or cooking, lack of indoor plumbing, and presence of mold. Our analysis suggested an increase in respiratory illness from indoor use of wood for heating or cooking, or lack of indoor plumbing. More than half of the studies identified the same non-chemical (natural environment) stressor as proximity to polluted landscapes. Primary chemical stressors were PCBs, p,pˈ-DDE, HCB, lead, and mercury. 

Conclusion

[bookmark: _GoBack]To the best of our knowledge, this is the first review to explore chemical and non-chemical stressors found in AI/AN children’s built and natural environments. Limited studies were identified, demonstrating a major research gap. Future studies need to consider stressors outside of the household and other elements of the natural environment as well as evaluate stressors from AI/AN children’s total environment (built, natural, and social). Findings can be used as a guide to promote healthy environments for AI/AN children in regards to household use of wood for heating or cooking and lack of indoor plumbing. 
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1. Introduction 
When compared to adults, children are more vulnerable to exposures from environmental contaminants found in their everyday environments. This vulnerability can be due to age-specific factors such as differences in physiology, developmental stages, surface-to-volume ratio, lifestage-specific activities and behaviors (e.g., object/surface-to-hand then hand-to-mouth) (Hubal et al., 2000; Faustman et al., 2000; Weiss, 2000; Goldman, 1995). Because of the way children interact with their environment, they can be exposed to the same chemical through multiple exposure routes (Faustman et al., 2000; Goldman, 1995).    
Exposure to stressors during critical stages of development may lead to growth abnormalities, structural impairments, functional deficits, and altered survival (U.S. EPA, 1991; Faustman et al., 2000). Stressors are defined as any physical, chemical, social, or biological entity that can induce change in health and well-being (Tulve et al., 2016). For assessing childhood exposures, early lifestage groupings are narrow when rapid development occurs (i.e., birth to <1 month, 1 to <3 months, 3 to <6 months, 6 to <12 months, 1 to <2 years, 2 to <3 years) and broader in later childhood when the rate of development slows (i.e., 3 to <6 years, 6 to <11 years, 11 to <16 years, 16 to <21 years) (U.S. EPA, 2005). 
Stressors between children’s everyday environments (built, natural, and social) may contribute to differences in children’s exposures, thereby impacting their health and well-being. The built environment represents man-made surroundings such as land use, transportation, buildings, and infrastructure. The natural environment represents naturally-occurring surroundings, living and non-living, such as the atmosphere, water bodies, forests, and mountains. The social environment may include factors related to social interactions, the economy, the community, school, safety, parental level of education, number of people in home, and access to resources (Tulve et al., 2016). 
Children from some communities, such as those from American Indian/Alaska Native (AI/AN) Tribes, are disproportionately burdened with adverse health and well-being outcomes when compared to other populations in the U.S. (IHS, 2014). According to the U.S. Department of Health and Human Services’ Indian Health Service (IHS) (2014), the leading causes of post-neonatal mortality among AI/ANs from 2007 to 2009 were sudden infant death syndrome (SIDS); congenital malformations, deformations, and chromosomal abnormalities; and unintentional injuries. The mortality rate for SIDS, for example, was twice as high when compared to all races and Whites in the U.S. For AI/AN children between the ages of 1 and 4 years, the leading causes of mortality were unintentional injuries (rate was four times greater than the mortality rate among all races in the U.S.), homicide, and congenital anomalies (IHS, 2014). For children between the ages of 5 and 14 years, the leading causes of mortality were unintentional injuries, suicide, and malignant neoplasms (IHS, 2014). The leading cause of hospitalizations for children between the ages of 1 and 4 years was respiratory diseases; while the leading cause of hospitalizations for children between the ages of 5 and 14 years were respiratory system diseases, digestive system diseases, and injury and poisoning (IHS, 2014).
American Indians/Alaska Natives encounter a multitude of stressors from their built, natural, and social environments related to hazards around their communities (IHS, 2016). Disparities in stressors affecting AI/AN children need to be considered when examining their impacts on AI/AN children’s health and well-being. Previous reviews of the peer reviewed literature have focused only on stressors from AI/AN children’s social environment. These studies identified stressors related to societal, cultural, community, school, and family factors (Burnette et al., 2016); cultural implications when AI children are placed away from their communities (Green, 1983); adolescent socialization (Dinges, 1979); and the benefits of breastfeeding (Stevens, 2016). We could not find a published review of chemical and non-chemical stressors from AI/AN children’s built and natural environments. 
Our objectives were to conduct a state-of-the-science review to identify chemical and non-chemical stressors from AI/AN children’s built and natural environments and to assess relationships between these stressors and any health and well-being outcomes. 
2. Methods

This state-of-the-science review was conducted in accordance with PRISMA (Preferred 
Reporting Items for Systematic Reviews and Meta-Analyses) guidelines (Moher et al., 2009). 
2.1 Eligibility criteria
Studies were eligible if the title or abstract included AI/AN children in the study sample, presented findings of stressors (chemical or non-chemical entities that could impact changes in health and well-being) from the built or natural environments, were published in English, and published by December 31, 2016. 
2.2 Information sources
Three library databases (ProQuest’s Environmental Science Collection, PubMed, and Web of Science) were searched with key words and search strings focused on AI/AN children (e.g., Alaska Native AND child). Bibliographies of relevant studies were also reviewed to locate additional relevant articles. 
2.3 Search
The key word/search string strategy was similar across the three databases (one database’s key word/search string is listed in Figure 1). The first component of the key word/search string targeted AI/AN background (i.e., “native American” OR “american indian” OR “alaska native” OR “alaskan native”). The second component targeted children (e.g., “prenatal” OR “pre-natal” OR child* OR youth OR adolescent OR adolescence OR preconception OR “pre-conception” OR “pre-school” OR preschool OR fet* OR baby OR pregnancy OR toddler OR teen*). The only difference across the databases for the key words was the fetal term. In PubMed, the fetal term was lengthened because it would have only used the first few hundred variations with a shortened term (i.e., fet*). 
These key words/search strings were searched in the title and abstract fields (ProQuest and PubMed). In Web of Science, however, there was no available field to search abstracts only so the ‘Topic’ field was selected; the ‘Abstract of Published Item’ field was bibliographic-only data for a published paper. Results from these searches were limited to: a specific end date of December 31 2016, English language articles, and scholarly journals.  
2.4 Study selection
Titles and abstracts were screened (n=4,021) and duplicate articles removed (n=1,482) (Figure 1). References were then excluded (n=2,503) if they: 1) did not discuss AI/AN children or AI/AN children were not the primary cohort of interest; 2) discussed Tribes outside the U.S.; 3) described reviews or interventions; or 4) did not provide findings about chemical or non-chemical stressors from the built or natural environments. Full-text reviews were conducted for the remaining articles (n=36).
2.5 Data items
Data were collected for the study’s authors, year of publication, environment (built 
or natural) of the stressor(s) described, nature of the stressor(s) (either chemical or non-chemical), outcome(s) described, number and age of children, period of study, data source(s), location of study, summary measures (e.g., mean, median, range, odds ratios, correlation and regression coefficients with indicators of statistical significance), and study’s findings. Data collection was performed for each individual stressor.
2.6 Synthesis of results
Results included univariate and multivariate analyses. Results were reported for the 
occurrence of the chemical and non-chemical stressor(s) in the study sample by environment (built or natural), consideration of other factors in the analysis, and the impact of the stressor(s) on the outcome(s) described. A narrative review is provided for each identified stressor. Results were synthesized to compare studies with matching methodology for similar stressors and outcomes.  
3. Results 
3.1 Study selection
From the three library databases, 2,539 references were screened after duplicates were removed resulting in the inclusion of 35 relevant studies (Figure 1). Studies were most frequently excluded for not reporting findings on chemical or non-chemical stressors from the built or natural environments. Fourteen studies reported stressors from the built environment, 19 from the natural environment, and two from both environments. Relevant studies were published between 1986 and 2016. By journal, the greatest number of studies for stressors identified from the built environment were published in Pediatric Infectious Disease (n=3), while the greatest number of studies for stressors from the natural environment were published in Environmental Health Perspectives (n=3) (Figure 2).
3.2 Study characteristics
From our 35 relevant studies, sample populations were mainly from rural or isolated settings. Among studies with available information about study design, seven were case-control, five were cross-sectional, six were done at the village/community-level (two were retrospective cohort), and one was qualitative (Tables 1 and 2). Population sample sizes ranged from 22 (Petersen et al., 2003) to 10,360 (Gilbreath et al., 2006a). Village/community sample sizes ranged from 49 (Bruden et al., 2015) to 197 (Gilbreath et al., 2006a). American Indians/Alaska Natives were the only sample population in all studies except four (Goldcamp et al., 2006b; Malcoe et al., 2002; Orr et al., 2002; Xue et al., 2014). Goldcamp et al. (2006b) targeted non-fatal injuries among household youth on minority-operated farms, which were also comprised of Asian, Black, and ‘Other’ operators. Malcoe et al. (2002) examined lead exposures around a former mining region also among White children in Oklahoma. Orr et al.’s (2002) study cohort also included Black/African American, Hispanic/Latino, and Asian/Pacific Islander children of women living around hazardous waste sites in California. Xue et al.’s (2014) cohort was composed of Mexican American, Non-Hispanic White, Non-Hispanic Black, Other Hispanic, and “Asian, Pacific Islander, Native American or multiracial” participants from the National Health and Nutrition Examination Survey (NHANES) for an analysis of blood polychlorinated biphenyl (PCB) concentrations.    
3.3 Built environment  
Sixteen studies described chemical and non-chemical stressors from the built environment in early and later lifestages of childhood (Table 1). Eleven studies took place in the state of Alaska. In 12 studies, respiratory illness was the outcome of interest; medical records were the data source for eight studies. Stressors were predominantly around the household, affecting water quality (six studies), air quality (two studies), both (six studies) or were due to farm operations (two studies). There were only three studies that sampled around these environments: Singleton et al. (2016) sampled indoor air for particulate matter, carbon dioxide, and volatile organic compounds; Robin et al. (1996) sampled respirable particles in indoor air; and Surdu et al. (2006) measured mite and cat allergen concentrations in indoor dust. 
3.3.1 Household lack of plumbing/running water 
Nine studies identified the same non-chemical stressor in the home as a lack of plumbing/running water. In seven studies, an increased risk of respiratory illness was associated with a lack of plumbing/running water (Table 3). Five of these studies found an increased risk of lower respiratory tract infections (LRTIs) (Bruden et al., 2015: adjusted relative risk=1.25 (95% CI: 1.05-1.26); Hennessy et al., 2008: greatest adjusted rate ratio among those younger than one year=6.57 (95% CI: 5.58-7.72); three studies found a decreased risk of LRTIs from the presence of plumbing/running water (Bulkow et al., 2012: adjusted OR=0.29 (95% CI: 0.14-0.58); Gessner et al., 2008: adjusted outpatient LRTI beta (β) estimate from regression analyses=-0.53 (P<0.001); Morris et al., 1990: unadjusted OR=0.5 (P=0.061)). The two remaining studies observed an increased incidence of invasive pneumococcal disease (Wenger et al., 2010: 391 cases per 100,000 children per year in a region with a low proportion of households with piped water vs. 147 cases in a high-water service region (P=0.008)) or increased pneumococcal colonization (precursor for invasive disease) of the nasopharynx (Reisman et al., 2014: greatest risk among those aged less than five years, OR=1.42). 
Two studies examined exposure to potential hazardous waste and waste disposal methods (Gilbreath et al., 2006a) and adverse birth outcomes (Gilbreath et al., 2006b) among mothers living near open dumpsites in Alaska Native villages who gave birth. Gilbreath et al. (2006a) found mothers from villages with high hazard dumpsite rankings were more likely to live in villages with some households or no households with piped water compared to mothers from villages with low hazard dumpsite rankings. And, a significantly greater risk of low birth weight (OR: 1.35, 95% CI: 1.06-1.72), very low birth weight (OR: 2.13, 95% CI: 1.21-3.75), and preterm birth (OR: 1.27, 95% CI: 1.07-1.51) was observed for infants from mothers who lived in villages with some households with piped water versus infants from mothers residing in villages with all households receiving piped water (Gilbreath et al., 2006b).   
3.3.2 Household use of wood for heating or cooking	
Use of wood for heating or cooking in the home was identified as a non-chemical stressor in six studies. In five studies, an increased risk of respiratory illness was observed due to a woodstove or wood-burning stove (Singleton et al., 2016: greatest adjusted OR for cough between colds=3.18 (P=0.027); Ware et al., 2014: greatest unadjusted OR for pneumonia among those aged less than five years=2.1 (95% CI: 0.6-7.2); Bulkow et al., 2012: adjusted OR for LRTIs=2.21 (95% CI: 1.20-4.10); Robin et al., 1996: unadjusted OR for acute lower respiratory infections=5.0 (95% CI: 0.6-42.8); Morris et al., 1990: adjusted OR for LRTIs=4.85 (95% CI: 1.69-12.91)). The remaining study did not find any association from household use of wood for heating (Bruden et al., 2015: unadjusted relative risk for LRTIs=1.00 (95% CI: 0.95-1.07)). 
3.3.3 Mold
Presence of mold was identified in four studies, one of which collected information about factors contributing to chronic respiratory disease (Petersen et al., 2003). For the three studies with available effect estimates, two studies found an increased risk of respiratory illness due to mold (Ware et al., 2014: greatest unadjusted OR for flu among those aged less than five years=2.5 (95% CI: 1.0-6.1); Bulkow et al., 2012: unadjusted OR for LRTIs=1.21 (95% CI: 0.74-1.97)). The third study found a lower risk of having asthma (Surdu et al., 2006: unadjusted OR=0.83 (90% CI: 0.30-2.29)). All these associations were not statistically significant. 
3.3.4 Outdoor air quality
Three studies identified stressors due to concerns from outdoor smoke (Ware et al., 2014), having a burn-barrel near the home (Surdue et al., 2006), and steam baths/housing sand dust (Petersen et al., 2003). Among the two studies that had available effect estimates, both observed an increased risk for respiratory illness, but were not statistically significant (Ware et al., 2014: greatest unadjusted OR for colds among those 5 to 17 years=2.0 (95% CI: 0.8-4.5); Surdu et al., 2006: unadjusted OR for asthma=1.56 (90% CI: 0.52-4.74)).    
3.3.5 Farm operations
	Two studies targeted the occurrence of non-fatal injuries among household youth on racial minority-operated farms (Goldcamp et al., 2006b) and then only among a sub-cohort of AI-operated farms (Goldcamp et al., 2006a). In the Minority Farm Operator Childhood Agricultural Injury Survey, Goldcamp et al. (2006b) found that AI household youth had almost double the rate of injuries (24.0 injuries per 1,000 household youth, 95% CI: ±4.4) compared to injury rates among other racial minority youth living on farms (Asian: 4.6, 95% CI: ±2.2; Black: 6.4, 95% CI: ±2.4; Other: 12.3, 95% CI: ±3.7). AI household youth had a greater rate of work-related injuries (17.8 per 1,000 youth, 95% CI: 12.7-22.9) compared to non-work-related injuries (13.8, 95% CI: 11.8-15.8). Goldcamp et al. (2006a) then focused on AI-operated farms and observed that more than half of AI household youth (74%) lived on livestock farms. Among AI youth that sustained injuries, 83% were due to livestock farm operations.
3.4 Natural environment 
Twenty-one studies described chemical and non-chemical stressors from the natural environment in early and later lifestages of childhood on primarily developmental outcomes (Table 2). Fourteen of these studies shared cohorts from the same territory in the state of New York. The primary non-chemical stressor was derived from residential proximity to polluted landscapes. Chemical stressors were identified in 19 studies, including PCBs, p,pˈ-dichlorodiphenyldichloroethylene (p,pˈ-DDE), hexachlorobenzene (HCB), lead, and mercury. Thirteen studies used biomarkers to characterize exposure, with only eight studies (Ernst et al., 1986; Fitzgerald et al., 2004; Gilbreath et al., 2006a; Gilbreath et al., 2006b; Malcoe et al., 2002; Monheit et al., 2008; Orr et al., 2002; Shields et al., 1992) obtaining environmental measurements or employing other methods to characterize exposure. Apart from Gilbreath et al. (2006a, 2006b), Orr et al. (2002), and Shields et al. (1992); these studies also sampled air, food, dust, paint, soil, and water (Ernst et al., 1986; Fitzgerald et al., 2004; Malcoe et al., 2002). Monheit et al. (2008) sampled sediment, vegetation, and water. Gilbreath et al. (2006a, 2006b) and Orr et al. (2002) determined the potential for exposure of mothers from their residence and Shields et al. (1992) from their work locations.
3.4.1 Residential proximity to polluted landscapes
Among the 21 studies, 19 shared the same non-chemical stressor derived from residential proximity to polluted landscapes mainly contaminated by hazardous waste. For these 19 studies, investigators targeted youth (11 studies) and mothers (eight studies). Twelve of the 19 studies evaluated the impact of this stressor on developmental outcomes (cognitive function, thyroid function, sexual maturation, lung function, and birth outcomes).  
3.4.1.1 AI youth
Among the 11 studies with AI youth cohorts, ten studies examined exposures of youth from the same territory in New York adjacent to three hazardous waste sites (one National Priority Superfund site and two New York State Superfund sites) and an aluminum smelter (Ernst et al., 1986) to PCBs, p,pˈ-DDE, HCB, mirex, fluoride, lead, and mercury. The remaining study examined childhood lead exposures from a former uranium mining region in Oklahoma (Malcoe et al., 2002).
Toxicant levels. A study by Schell et al. (2003) found youth (N=271 in New York, between 10 and 17 years of age) who were breastfed to have on average 1.3 times the levels of total PCB blood concentrations, persistent PCBs, and other toxicants (p,pˈ-DDE and mirex) compared to youth who were not breastfed (Table 4). Levels of another toxicant (HCB) and heavy metals (lead and mercury) were similar across both breastfed and non-breastfed youth (Schell et al., 2003). When a sample of these youth were between 17 and 20 years old (N=152), both groups (those who were breastfed and not-breastfed) had lower geometric mean concentrations of their total PCB concentrations (including concentration for PCBs detected in 50% or more of participants) than when they were sampled at a younger age (Gallo et al., 2011). Levels of other toxicants (p,pˈ-DDE and HCB) were similar to levels when sampled at an earlier age.   
Cognitive function. Additional studies were conducted among the NY youth cohort to investigate relationships between PCB measures and cognitive function (Newman et al., 2006; 2009; 2014). Newman et al. (2006) observed among 271 youth, aged between 10 to 17 years, that as PCB concentrations increased, scores decreased for two measures of long-term memory (Delayed Recall Index: β=-3.6, P=0.019 and Long Term Retrieval: β=-6.9, P=0.004) and a measure of comprehension and knowledge (β=-4.6, P=0.043). Newman et al. (2009) further investigated this relationship among this cohort, specifically for PCB congeners grouped by structure (dioxin-like or non-dioxin-like) and by persistence. Newman et al. (2009) also found decreased scores for long-term memory (Delayed Recall Index and Long Term Retrieval) from increased concentrations of PCB measures (all PCB congener groups: dioxin-like, non-dioxin-like, persistence, and low-persistence). These associations were observed between PCBs grouped by structure (dioxin-like PCBs and nonverbal Ravens test scores) and persistence (persistent PCBs and Auditory Processing scores, low-persistent PCBs and scores for comprehension and knowledge). Newman et al. (2014) did not find evidence of adverse effects of persistent PCB levels on ADHD-like behavior.          
Thyroid function. Among 232 adolescents in New York, Schell et al. (2008) observed a significant reduction in levels of thyroid function measures with higher persistent PCB concentrations (similar findings were found in a preliminary study by Schell et al. (2004) among a smaller cohort of 115 adolescents). Schell et al. (2009) found those with elevated anti-thyroid peroxidase levels (suggesting an elevated risk of autoimmune disease) among 47 adolescents who were breastfed had significantly greater levels of all PCB groupings (except non-persistent PCBs) and levels of another toxicant (p,pˈ-DDE). 
Other outcomes. In a study evaluating multi-chemical exposures among adolescent girls (Denham et al., 2005), only higher lead levels were significantly associated with a delay in attaining menarche (β=-1.29, P=0.01) and a group of potentially estrogenic PCB congeners were associated with reaching menarche earlier (β=2.13, P=0.04). Another study (Ernst et al., 1986) examined lung function among 253 adolescents who lived near an aluminum smelter. Ernst et al. (1986) found significant associations between increased closing volume (may be indicative of lung abnormalities in small airways) only among boys who had lived near the smelter 60% or more of their lives, versus those who had lived farther away 60% or more of their lives (high exposure mean CV/VC%=8.25, SEE=1.02 vs. low exposure mean CV/VC%=5.36, SEE=1.07; P=0.05), and increasing levels of urinary fluoride (boys: CV/VC% slope=4.78, P=0.02; girls: CV/VC% slope=4.40, P=0.01). 
3.4.1.2 Mothers
For the six studies targeting mothers, four studies examined maternal exposures mainly to PCBs and DDT compounds from the New York cohort. The two remaining studies investigated maternal (father and grandparents as well) exposures to radiation from residence and/or work locations in a former uranium mining region in New Mexico (Shields et al., 1992) and maternal exposures to contaminants around hazardous waste sites in California (Orr et al., 2002).     
Pregnant women. In a study from 1992 to 1995 among 111 pregnant AI women in New York, Fitzgerald et al. (2004) observed the geometric mean of their total PCB blood concentrations to be 1.2 ppb (maximum: 7.8 ppb). The specific PCB congeners detected at the greatest concentrations were 153 (geometric mean: 0.092 ppb), 138 (0.0345 ppb), and 180 (0.0142 ppb).
Mothers who breastfed their infants. For AI mothers who gave birth between 1986 and 1989, the (adjusted) geometric mean of their total PCB breast milk concentration was 0.602 ppm (fat basis) (Fitzgerald et al., 1998). For AI mothers giving birth after 1989, their (adjusted) geometric mean total PCB breast milk concentration was lower (0.352 ppm in 1990 and 0.254 ppm for 1991-1992). Compared to White mothers (controls) who gave birth around the same time, their (adjusted) geometric mean total PCB breast milk concentration was lower than the geometric mean total PCB breast milk concentration among AI mothers only for the earliest period of study (between 1986 and 1989): 0.375 ppm (P<0.01). After 1989, though, the control mothers’ geometric mean total PCB breast milk concentration was slightly greater than that of the AI mothers: 0.404 ppm in 1990 and 0.318 ppm between 1991 and 1992. 
The specific PCB congeners that were detected at the greatest concentrations in breast milk were identical among AI and control mothers. According to Fitzgerald et al. (1998), they were PCB congeners 138 (adjusted geometric mean: 53.5 ppb, fat basis among AI mothers vs. 29.9 ppb among control mothers), 153 (49.8 ppb vs. 32.8 ppb), and 99 (32.9 ppb vs. 14.8 ppb). Another study (Hong et al., 1994) examined the same cohort of breastfeeding mothers who gave birth between 1988 and 1990 and found specific PCB congeners to be the main contributors to the total PCB calculated toxic equivalent values. These specific congeners were 118 (25.8 pg/g lipid), 126 (25 pg/g), and 105 (10.8 pg/g). 
For other toxicants that were examined among mothers who breastfed, geometric mean breast milk concentrations among AI mothers were all greater than those for White control mothers only for the earliest period of study (1986-1989): p,pˈ-DDE: 420 ppb (fat basis) vs. 198 ppb; HCB: 2.6 vs. 1.2 ppb; and mirex: 1.8 vs. 1.7 ppb. After 1989, the geometric mean breast milk concentration (ppb) for HCB (1990: 8.7 vs. 11.0 and 1991-1992: 12.5 vs. 14.4) and p,pˈ-DDE (1991-1992: 183 vs. 190) was lower than those for control mothers.           
Developmental outcomes. Among other AI/AN study cohorts, an increased risk of adverse birth outcomes was observed when a mother lived near uranium mine dumps (tailings) in New Mexico (Shields et al., 1992), near Superfund hazardous waste site(s) in California (Orr et al., 2002), and near open dumpsites in Alaska Native villages (Gilbreath et al., 2006a, 2006b). Shields et al. (1992) found a significant increase for a group of birth outcomes (n=113) (OR: 2.71, P=0.03), including outcomes such as hip dysplasias/dislocations and mental retardation. An increased significant association for birth outcomes was also found when the mother worked at an electronics plant (OR: 2.71, P=0.03), confounding the previous association because these workers were also exposed to a variety of chemicals and solvents, including trichloroethylene and gamma emissions (Shields et al., 1992). Orr et al. (2002) found the strongest association between birth defects and potential for exposure of mothers to contaminants at hazardous waste sites among AI/ANs (OR: 1.19, 95% CI: 0.62-2.27) (vs. mothers who were not exposed) compared to associations observed among Hispanics/Latinos (OR: 1.15, 0.95-1.38), Black/African Americans (OR: 0.95, 0.70-1.28), and Asian/Pacific Islanders (OR: 1.13, 0.84-1.53). Gilbreath et al. (2006a) reported the only significant predictor for adverse birth outcomes, which included fetal/neonatal deaths and congenital anomalies, was infants born with anomalies classified as other defects from mothers who resided in Alaska Native villages containing high hazard rankings for their open dumpsite contents (compared to those with moderate rankings) (rate ratio: 4.27, 95% CI: 1.76-10.36). For other adverse birth outcomes, Gilbreath et al. (2006b) found a significantly higher proportion of infants from mothers born with low birthweight or infants born with intrauterine growth retardation who lived in villages with high hazard dumpsite rankings (OR: 2.06, 95% CI: 1.28-3.32; OR: 3.98, 95% CI: 1.93-8.21, respectively) or intermediate hazards (OR: 1.73, 95% CI: 1.06-2.84; OR: 4.38, 95% CI: 2.20-8.77, respectively) compared to low hazard dumpsites.     
3.4.2 Dietary consumption
In two studies, a non-chemical stressor was identified due to dietary consumption of aquatic vegetation (emergent tules) in California, which were applied an herbicide (Monheit et al., 2008), and of foods containing PCBs (Xue et al., 2014) (chemical stressors). Monheit et al. (2008) observed very low levels of fluridone (an herbicide) in sediment, vegetation, and water, and found the herbicide application methods posed little to no hazard of adverse effects to AI/AN children from fluridone exposure through consumption of the vegetation. Xue et al. (2014) found NHANES “Asian, Pacific Islander, Native American or multiracial” participants aged between 12 and 30 years had the highest total blood PCB concentrations (~0.6 nanograms per gram (ng/g)) when compared to total blood PCB concentrations among non-Hispanic White (>0.4 ng/g), other Hispanic (>0.4 ng/g), non-Hispanic Black (~0.4 ng/g), and Mexican American (<0.4 ng/g) participants for the study years 2001 and 2004. A linkage of these PCB blood concentrations and dietary consumption information collected for the same NHANES participants found a positive correlation between fish consumption and total PCB blood concentrations (Pearson coefficient: 0.07, P<0.01). 
4. Discussion 
To the best of our knowledge, this is the first review to focus on chemical and non-chemical stressors from AI/AN children’s built and natural environments that may impact their health and well-being. We demonstrated an information gap due to the limited number of studies that were identified. Despite a paucity of studies, this review is suggestive of a potential increase in respiratory illness from built environment stressors in the household due to use of wood for heating or cooking or lack of running water. On the other hand, for natural environment stressors, the low number of studies with matching stressors and outcomes made interpretation of the findings challenging. Among the 21 studies that identified natural environment stressors, 14 shared one cohort from the same territory in New York with all studies identifying chemical stressors from predominantly PCBs, p,pˈ-DDE, HCB, lead, and mercury.
From our 35 relevant studies, sample populations were mainly in rural or isolated settings. Compared to other non-urban children’s populations in the U.S., distinct chemical or non-chemical stressors were identified from these children’s built and natural environments (Loewenherz et al., 1997; Stallones, 1989; Rivara, 1985; Salmi et al., 1989; Merchant et al., 2005). For instance, Loewenherz et al. (1997) found children living in households with pesticide applicators and near pesticide-treated orchards in the state of Washington had greater organophosphorus pesticide exposures compared to children without a household pesticide applicator and a greater distance from agricultural pesticide spraying. For non-chemical stressors, the use of agricultural equipment, primarily tractors (Stallones, 1989) followed by farm wagons, combines, and forklifts posed a risk for fatal and non-fatal injuries among children living in agricultural settings (Rivara, 1985). Included in this review were two studies targeting racial minority youth living on farms (Goldcamp et al., 2006a; 2006b) where a large proportion of their non-fatal injuries were attributed to livestock farm operations. Among children up to nine years old in Wisconsin and Illinois with farm-related injury deaths between 1979 and 1985, 55% were due to moving machinery (tractors, wagons, and trucks) and 15% from drownings (Salmi et al., 1989). Other chemical and non-chemical stressors included living on farms that raise swine (asthma prevalence of 44% among rural Iowa children, P=0.01) and raising swine and adding antibiotics to feed (55.8%, P=0.013) (Merchant et al., 2005). 
    When compared to AI/AN children’s built environment stressors, similar stressors were identified for other children living in non-urban settings in regards to inadequate plumbing for running water and wastewater disposal services. Among 188 rural low-income households with 320 children under the age of seven years that received water from a well in two western U.S. counties, 27% of households detected at least one contaminant, including total coliforms (18%), arsenic (6%), synthetic organic chemicals (6%), nitrates (2%), fluoride (2%), and E. coli (<1%) (Postma et al., 2011). Also, in a study by Borchardt et al. (2003) among children less than 19 years old in Wisconsin, diarrhea was associated with drinking from a household well contaminated with fecal enterococci (adjusted OR=6.18, 95% CI: 1.22-31.46).
Other studies have identified stressors related to access to resources and impact of nature on life stress among children living in rural settings. According to the 2001 National Household Travel Survey, rural households traveled farther than urban residents to access health care; rural residence was associated with a trip of 30 road miles or more (OR=2.67, 95% CI: 1.39-5.15) (Probst et al., 2007). Another study found rural residence to lower levels of life stress among children in grades three to five who lived in higher levels of nearby nature (vegetation near residence) compared to children with little nearby nature (Wells et al., 2003). 
4.1 Limitations 
The main limitation of this review was the few identified relevant studies (<40). This limitation ruled out a quantitative review (i.e., meta-analysis) due to the variety of study designs, stressors, and outcomes. Few studies had matching methodology for the same stressor and the same outcome so we opted, for instance, to qualitatively compare studies for similar stressors and outcomes. We also compared effect estimates from community/village-level analyses and effect estimates from individual-level analyses for similar stressors and outcomes. 
Other limitations were due to sample diversity and publication bias. A lack of diversity was noted among our studies’ sample cohorts; fourteen studies shared a cohort living around the same territory in the state of New York. These studies mainly identified the same stressor (living around hazardous waste/polluted sites and exposure to PCBs). Another limitation was that we relied on published literature, perhaps limiting us to studies that generated findings with distinctive or significant associations since non-significant associations are not as frequently published. We did not have access to unpublished literature investigating other possible stressors and outcomes.
4.2 Future research 
This state-of-the-science review identified an information gap concerning research outside of AI/AN children’s social environments. Almost all 35 studies from this review targeted stressors where AI/AN children lived, in mostly non-urban settings. According to Tulve et al.’s (2016) conceptual framework, a child’s total environment needs to be considered in order to examine the interrelationships between chemical and non-chemical stressors, inherent characteristics, and children’s activities and behaviors in influencing their health and well-being. The total environment includes chemical and non-chemical stressors from environments where children also learn and play (Tulve et al., 2016). Future studies need to consider chemical and non-chemical stressors for built environments outside the household (e.g., school, daycare) and in urban settings as well as other elements of the natural environment (e.g., access to open green spaces, parks). Linkages between chemical and non-chemical stressors from AI/AN children’s built, natural, and social environments can then be performed in order to evaluate the total environment and their impacts on AI/AN children’s health and well-being.
5. Conclusion 
This state-of-the-science review provides information about the nature of chemical and non-
chemical stressors from the built and natural environments that may influence AI/AN children’s health and well-being. The findings from this review can be used as a guide to promote healthy environments for AI/AN children in regards to household use of wood for heating or cooking and access to indoor running water. This work identified a major research gap which may help direct future research initiatives to develop studies to consider stressors outside the household and other elements of the natural environment.
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Figure 1. State-of-the-science review study selection (reporting of items adapted from Moher et al., 2009).
Example of a search string:

(“native american” OR “american indian” OR “alaska native” OR “alaskan native”) 
AND 
(prenatal OR “pre-natal” OR child* OR youth OR adolescent OR adolescence OR preconception OR “pre-conception” OR “pre-school” OR preschool OR fet* OR fetus OR baby OR pregnancy OR toddler OR teen*)
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Table 1. Characteristics from 16 studies by stressors from the built environment.
	
	
	
	
	
	

	Study
	Health outcome(s)
	Lifestage group1
	Location (U.S. state)/period of observation
	Sample                 size/design
	Data source(s)

	
	
	
	
	
	

	INDOOR WATER QUALITY
	
	
	
	

	Lack of piped/running water
	
	
	
	
	

	Bruden et al., 2015
	LRTI                        RSV
	<12 mos
	AK 1995-2012
	N=49 villages                      village-level analysis
	ACS, Census, med. records

	Bulkow et al., 2012
	hMPV                      hPIV                              LRTI                           RSV 
	<12 mos          1-<2 yrs              2-<3 yrs
	AK 2006-2007
	n=128 cases n=186 controls                               case-control
	Med. records, questionnaires

	Gessner et al., 2008
	LRTI
	<12 mos          1-<2 yrs
	AK 1998-2003
	N=108 villages                    community-level analysis
	Census, med. assistance/water service records, provider billing

	Hennesy et al., 2008
	PNA and flu                        RSV
	<12 mos          1-<2 yrs              2-<3 yrs              3-<6 yrs  11-<16 yrs 16-21 yrs
	AK 2000-2004
	N=128 villages, 12,480 homes in 6 regions            village-level analysis
	Med. records, outbreak investigation, sanitation inventory, surveillance

	Morris et al., 1990
	LRTI (PNA, bronchiolitis)
	<12 mos          1-<2 yrs 
	AZ 1988
	n=58 cases n=58 controls                     case-control
	Interviews, med. records

	Reisman et al., 2014
	Pneumococcal colonization of nasopharynx
	<12 mos                 1-<2 yrs            2-<3 yrs           3-<6 yrs              11-<16 yrs      16-21 yrs
	AK 2008-2011
	N=6,080                                         cross-sectional
	Interviews, med. records, nasopharyngeal swabs for Streptococcus pneumoniae

	Wenger et al., 2010
	IPD
	<12 mos                1-<2 yrs              2-<3 yrs              3-<6 yrs
	AK 2001-2007
	N=50 villages                      village/city-level analysis
	CDC's Arctic Investigations Program, sanitation inventory

	Gilbreath et al., 2006a
	Adverse birth outcomes
	<12 mos
	AK 1997-2001
	N=10,073 from 197 villages
retrospective cohort
	Birth certificates, open dumpsite hazard rankings

	Gilbreath et al., 2006b
	-
	<12 mos
	AK 1997-2001
	N=10,360 from 197 villages
retrospective cohort
	Birth certificates, open dumpsite hazard rankings

	INDOOR AIR QUALITY
	
	
	
	

	Use of wood for heating or cooking
	
	
	
	

	Bruden et al., 2015
	LRTI                        RSV
	<12 mos
	AK 1994-2012
	N=49 villages                      village-level analysis
	ACS, Census, med. records

	Bulkow et al., 2012
	LRTI
	<12 mos                1-<2 yrs              2-<3 yrs
	AK 2006-2007
	n=128 cases n=186 controls                       case-control
	Med. records, questionnaires

	Morris et al., 1990
	LRTI (PNA, bronchiolitis)
	<12 mos                1-<2 yrs 
	AZ 1988
	n=58 cases n=58 controls case-control
	Interviews, med. records

	Ware et al., 2014
	Asthma                    LRTI
	<12 mos                1-<2 yrs              2-<3 yrs             3-<6 yrs             6-<11 yrs        11-<16 yrs      16-21 yrs
	AK 2011-2012
	N=475 in 241 households              cross-sectional
	Questionnaires

	Robin et al., 1996
	ALRI
	<12 mos                1-<2 yrs
	AZ 1992-1993
	n=45 cases n=45 controls case-control
	Interviews, med. records

	Singleton et al., 2016
	Severe/chronic lung disease
	1-<2 yrs           2-<3 yrs          3-<6 yrs              6-<11 yrs             11-<16 yrs
	AK 2012-2015
	N=63 households                 analyses between indoor air pollutants and respiratory symptoms/diagnoses
	Air monitoring, interviews

	Dirt floor
	
	
	
	
	

	Morris et al., 1990
	LRTI (PNA, bronchiolitis)
	<12 mos                1-<2 yrs 
	AZ 1988
	n=58 cases n=58 controls case-control
	Interviews, med. records

	Garage attached to home
	
	
	
	

	Surdu et al., 2006
	Asthma
	2-<3 yrs          3-<6 yrs              6-<11 yrs       11-<16 yrs
	NY - 
	n=25 cases n=25 controls case-control
	Air/dust samples, interviews, med. records

	House built before 1985
	
	
	
	

	Ware et al., 2014
	Respiratory disease
	<12 mos                1-<2 yrs              2-<3 yrs              3-<6 yrs               6-<11 yrs             11-<16 yrs       16-21 yrs
	AK 2011-2012
	N=475 in 241 households              cross-sectional
	Questionnaires

	INDOOR WATER/AIR QUALITY
	
	
	
	

	Mold
	
	
	
	
	

	Bulkow et al., 2012
	LRTI
	<12 mos                1-<2 yrs                  2-<3 yrs
	AK 2006-2007
	n=128 cases n=186 controls                    case-control
	Med. records, questionnaires

	Surdu et al., 2006
	Asthma
	2-<3 yrs          3-<6 yrs             6-<11 yrs        11-<16 yrs
	NY -
	n=25 cases n=25 controls case-control
	Air/dust samples, interviews, med. records

	Ware et al., 2014
	Respiratory disease
	<12 mos          1-<2 yrs             2-<3 yrs             3-<6 yrs              6-<11 yrs        11-<16 yrs        16-21 yrs
	AK 2011-2012
	N=475 in 241 households              cross-sectional
	Questionnaires

	Petersen et al., 2003
	CRD
	<12 mos         >12 mos
	AK -
	N=22 community members (parents, healthcare providers)               qualitative
	Interviews

	OUTDOOR AIR QUALITY
	
	
	
	

	Outdoor air pollution
	
	
	
	
	

	Surdu et al., 2006
	Asthma
	2-<3 yrs          3-<6 yrs              6-<11 yrs              11-<16 yrs
	NY - 
	n=25 cases n=25 controls case-control
	Air/dust samples, interviews, med. records

	Ware et al., 2014
	Respiratory disease
	<12 mos                1-<2 yrs               2-<3 yrs               3-<6 yrs               6-<11 yrs         11-<16 yrs        16-21 yrs
	AK 2011-2012
	N=475 in 241 households              cross-sectional
	Questionnaires

	Steam baths/housing sand dust/poor sanitation
	
	
	

	Petersen et al., 2003
	CRD
	<12 mos         >12 mos
	AK - 
	N=22 community members (parents, healthcare providers)                   qualitative
	Interviews

	FARM OPERATIONS
	
	
	
	
	

	Goldcamp et al., 2006a
	Non-fatal injury
	6-<11 yrs
11-<16 yrs        16-21 yrs
	Nationwide 2000
	N=7,381 AI youth living on racial minority-operated farms
	USDA survey for NIOSH, Census of Agriculture

	Goldcamp et al., 2006b
	Non-fatal injury
	6-<11 yrs
11-<16 yrs        16-21 yrs
	Nationwide 2000
	N=7,381 youth living on 9,556 AI-operated farms
	USDA survey for NIOSH, Census of Agriculture

	1U.S. Environmental Protection Agency. Guidance on selecting age groups for monitoring and assessing childhood exposures to environmental 

	contaminants. Risk Assessment Forum. November 2005. EPA/630/P-03/003F.

	

	ACS - American Community Survey; AI – American Indian; AK - Alaska; ALRI - acute lower respiratory illness; AZ - Arizona; CA - California; CDC - Centers for Disease Control and Prevention; CRD - chronic respiratory disease; hMPV - human metapneumovirus; hPIV -

	human parainfluenza virus; IPD - invasive pneumococcal disease; LRTI - lower respiratory tract infection; NIOSH – National Institute for

	Occupational Safety and Health; NY- New York; PNA – pneumonia; RSV - respiratory syncytial virus; USDA – United States Department of Agriculture.      

	




Table 2. Characteristics from 22 studies by stressors from the natural environment.

	Study
	Chemical(s)                  of interest
	Health outcome(s)
	Lifestage               group1
	Location (U.S. state)/ period
	Sample                 size/design
	Data source(s)

	 
	
	 
	 
	 
	 
	 

	RESIDENTIAL PROXIMITY TO POLLUTED LANDSCAPES
	
	

	Youth (cohort from same territory)
	
	
	
	
	

	Schell et al., 2004
	p,p'-DDE, HCB, mirex, PCBs
	Thyroid function
	6-<11 yrs                   11-<16 yrs             16-21 yrs
	NY                      -
	N=115                        -
	Blood samples

	Schell et al., 2008
	p,p'-DDE, HCB, PCBs, lead 
	Thyroid hormone levels
	6-<11 yrs                   11-<16 yrs                    16-21 yrs
	NY                   1995-2000
	N=232                        -
	Blood samples, interviews 

	Schell et al., 2009
	p,p'-DDE, HCB, PCBs
	Thyroid function
	6-<11 yrs                   11-<16 yrs             16-21 yrs
	NY                    1995-2000
	N=115                        -
	Blood samples, interviews, questionnaires

	Newman et al., 2006
	PCBs
	Cognitive function
	6-<11 yrs                   11-<16 yrs                   16-21 yrs
	NY                      -
	N=271                        -
	Blood samples, cognitive tests, interviews

	Newman et al., 2009
	PCBs
	Cognitive function
	6-<11 yrs                   11-<16 yrs                    16-21 yrs
	NY                       -
	N=271                        -
	Blood samples, cognitive tests, interviews 

	Newman et al., 2014
	PCBs
	ADHD
	6-<11 yrs                   11-<16 yrs             16-21 yrs
	NY                      -
	N=271                            cross-sectional
	Behavioral ratings, blood samples

	Denham et al., 2005
	p,p'-DDE, HCB, PCBs, mirex, lead, mercury
	Timing of menarche
	6-<11 yrs                   11-<16 yrs                    16-21 yrs
	NY                      -
	N=138                        cross-sectional
	Blood samples, interviews 

	Ernst et al., 1986
	Fluoride from aluminum smelter
	Lung function
	11-<16 yrs             16-21 yrs
	NY                      1981
	N=253 children        analyses btw. community air pollution and individual lung function
	Air and urine sampling, interviews, lung function tests, plant fluoride content

	Gallo et al., 2011
	p,p'-DDE, HCB, PCBs
	-
	16-21 yrs
	NY                      -
	N=152                          -
	Blood samples, questionnaires 

	Schell et al., 2003
	p,p'-DDE, HCB, mirex, PCBs, lead, mercury 
	-
	6-<11 yrs                   11-<16 yrs                    16-21 yrs
	NY                    1996-2000
	N=271                        -
	Blood samples, interviews 

	Youth (other AI cohort)
	
	
	
	
	

	Malcoe et al., 2002
	Lead from a former uranium mining region
	-
	1-<2 yrs                     2-<3 yrs                           3-<6 yrs                           6-<11 yrs
	OK                      -
	n=95 AI n=129 White n=26 cases n=198 controls                  case-control
	Blood, dust, paint, soil, water samples; interviews 

	Mothers/infants (cohort from same territory) 
	
	
	
	

	Fitzgerald et al., 1998
	PCBs
	-
	<12 mos                    >12 mos 
	NY                   1986-1992
	n=97 AI (cases) who gave birth 1969-1992, n=154 White (controls) in counties relatively free of PCB contamination who gave birth during same period          cross-sectional
	Breast milk samples, interviews 

	Fitzgerald et al., 2004
	PCBs
	-
	<12 mos
	NY                  1992-1995
	N=111 pregnant AI women                    
-
	Air, blood, food, soil samples; interviews 

	Hong et al., 1994
	PCBs
	-
	<12 mos
	NY                      1988-1990
	n=20 AI (cases), n=30 controls from WIC clinics in 2 NY counties who gave birth 1988-1990                     -
	Breast milk samples, interviews 

	Fitzgerald et al., 2001
	p,p'-DDE, HCB, mirex
	-
	<12 mos                     >12 mos 
	NY                   1986-1992
	n=97 AI (cases), n=154 White (controls) from other rural areas in NY                    -
	Breast milk samples, interviews 

	Mothers/infants (Other AI/AN cohorts)
	
	
	
	

	Gilbreath et al., 2006a
	Potential exposure to hazardous waste and waste disposal methods
	Fetal/neonatal deaths, congenital anomalies
	<12 mos
	AK
1997-2001
	N=10,360 from 197 villages 
retrospective cohort
	Birth certificates, open dumpsite hazard rankings

	Gilbreath et al., 2006b
	Potential exposure to hazardous waste and waste disposal methods
	Adverse birth outcomes
	<12 mos
	AK
1997-2001
	N=10,073 from 197 villages
retrospective cohort
	Birth certificates, open dumpsite hazard rankings

	Orr et al., 2002
	COIs, inorganic compounds, nitrates/ nitrites, pesticides, VOCs
	Birth defect
	<12 mos
	CA              1983-1988
	n=431 cases n=392 controls                     case-control
	Birth defects program, residence 

	Shields et al., 1992
	Radiation from a former uranium mining region
	Adverse birth outcomes 
	<12 mos
	NM                  1964-1981
	N=266 pairs of cases/controls           case-control
	Interviews, med. records, NIOSH 

	DIETARY CONSUMPTION 
	
	
	
	

	Monheit et al., 2008
	Fluridone (herbicide)
	-
	<12 mos                      >12 mos 
	CA                   2005
	N=60 environmental samples               human health hazard assessment
	Aquatic tule vegetation, sediment, water samples

	Xue et al., 2014
	PCBs
	-
	11-<16 yrs                 16-21 yrs
	Nationwide 2001-2004 blood PCB levels; 1999-2006 dietary consumption
	3.9% of Asian/Pacific Islander, Native American, or multiracial (A/P/N/M) participants among 12-≤30 yrs of study sample for blood PCB levels, n=321 for A/P/N/M 12-20 years for consumption data                                             -
	NHANES, NYC Asian Market Survey, U.S. EPA's Food Consumption Intake Database

	1U.S. Environmental Protection Agency. 2005. Guidance on selecting age groups for monitoring and assessing childhood exposures to 

	environmental contaminants. Risk Assessment Forum. EPA/630/P-03/003F.

	
	
	
	
	
	
	

	p,p'-DDE - dichlorodiphenyldichloroethylene; AI/AN – American Indian/Alaska Native; ACS - American Community Survey; ADHD - attention deficit hyperactivity disorder; CA - California; COI - cytochrome oxidase inhibitor; HCB - hexachlorobenzene; NHANES - National Health and Nutrition Examination Survey; NIOSH - National Institute for Occupational Safety and Health; NM – New Mexico; NY – New

	York; OK – Oklahoma; PCB – polychlorinated biphenyl; U.S. EPA - United States Environmental Protection Agency; VOC – volatile

	organic compound; WIC - Women, Infants, and Children.
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Table 3. Study findings for stressors from the built environment.
	
	
	
	
	
	

	Study
	Variable of interest
	Health outcome(s)
	Effect estimate/ measure of association/ summary measure
	Other variables considered
	Association(s) between stressor and health outcome(s)

	
	
	
	
	
	

	INDOOR WATER QUALITY
	
	
	
	

	Lack of piped/running water
	
	
	
	

	Bruden et al., 2015
	Lack of plumbed water
	LRTI, RSV
	(UNADJUSTED) LRTI RR: 1.65 (95% CI: 1.49-1.83); RSV RR: 1.85 (95% CI: 1.57-2.17) (ADJUSTED) LRTI RR: 1.25 (95% CI: 1.05-1.26); RSV RR: 1.45 (95% CI: 1.19-1.78)
	Coastal community, community size, healthcare access, household crowding, period, poverty, wood heating 
	Higher hospitalization rates for LRTIs and RSV in communities with higher proportion of households that lack plumbed water 

	Bulkow et al., 2012
	Sinks in 2 or more rooms in house
	hMPV, hPIV, LRTI, RSV 
	(UNADJUSTED) hMPV OR: 0.58 (P=0.350); hPIV OR: 0.10 (P=0.030); LRTI OR: 0.41 (95% CI: 0.23-0.73); RSV OR: 0.30 (P=0.081) (ADJUSTED) LRTI OR: 0.29 (95% CI: 0.14-0.58)
	Bottle fed, medically high-risk, regularly vomiting after feeding, wood stove in house
	Decreased risk of hospitalizations for hMPV, hPIV, LRTIs, and RSV for households with sinks in 2 or more rooms

	Gessner et al., 2008
	Modern water service (in-home piped water/ septic system or water delivered by closed haul truck)
	LRTI
	(ADJUSTED) Outpatient LRTI β: -0.53 (P<0.001) inpatient LRTI β: -0.15 (P=0.088)
	Adult education, Alaska Native resident, young children in household, cigarette use, employment, household crowding, poverty, wood stove use
	Higher incidence of LRTIs among households lacking modern water service

	Hennessy et al., 2008
	Low in-home water service by region
	Pneumonia and influenza, RSV
	(ADJUSTED) Pneumonia and influenza <1 yr rate ratio: 6.57 (95% CI: 5.58-7.72); pneumonia and influenza 1-4 yrs rate ratio: 2.96 (95% CI: 2.51-3.50); pneumonia and influenza 5-19 yrs rate ratio: 1.80 (95% CI: 1.39-2.33); RSV <5 yrs rate ratio: 3.4 (95% CI: 3.0-3.8)
	Household crowding
	Higher hospitalization rates for pneumonia and influenza and RSV in regions with lower proportion of home water service

	Morris et al., 1990
	Presence of running water
	LRTI (bronchiolitis or pneumonia)
	(UNADJUSTED) OR=0.5 (P=0.061)
	Asthma history, respiratory illness exposure, wood-burning stove
	Children in households with running water tended to have fewer LRTIs

	Reisman et al., 2014
	Lack of in-home running water
	Pneumococcal colonization of nasopharynx
	(UNADJUSTED) <10 yrs OR: 1.25 (P=0.001); 10-17 yrs OR: 1.09 (P=0.26) (ADJUSTED) <10 yrs OR: 1.35 (95% CI: 1.08-1.69) (P=0.01); <5 yrs OR: 1.42 (P-value not available)
	Antibiotic use, household crowding, no. of young children, otitus media, pneumonia, respiratory infection, strep throat, village
	Increased prevalence of pneumococcal colonization significantly associated with lack of in-home running water among children less than 10 years

	Wenger et al., 2010
	Lack of in-home piped water
	IPD
	(UNADJUSTED) IPD rate for low water service (<10% of households served in region): 391 cases/100,000 children/yr (P=0.008); IPD rate for midlevel water service (10-80%): 263 cases/100,000/yr; IPD rate for high water service (80%+): 147 cases/100,000/yr (ADJUSTED) IPR rate and water service (P<0.02)
	Household crowding, poverty, wood for heating
	Higher IPD rates associated with lack of in-home piped water

	Gilbreath et al., 2006a
	Some or no piped water to households in village
	Adverse birth outcomes
	(UNADJUSTED) low birth weight: some households plumbed OR: 1.35 (95% CI: 1.06-1.72) no households plumbed OR: 1.32 (1.00-1.74) vs. all households plumbed; preterm birth: some households plumbed OR: 1.27 (1.07-1.51) no households plumbed OR: 1.41 (1.17-1.71); intrauterine growth retardation: some households plumbed OR: 0.92 (0.58-1.5) no households plumbed OR: 1.118 (0.71-2.0)   
	Birth weight, gender, healthcare options, interpregnancy interval, maternal age/education, missing values, parity, prenatal care, race, tobacco/alcohol use, year of birth
	Among mothers living near open dumpsites, a significantly higher risk of low birth weight, and preterm birth was associated with maternal residence in villages with some households receiving piped water compared to villages with all households receiving piped water.

	Gilbreath et al., 2006b
	Some or no piped water to households in village
	-
	(UNADJUSTED) Villages with high hazard dumpsite rankings: no households plumbed 36%, some households plumbed 39%, all households plumbed 25% vs. villages with low hazard dumpsite rankings: no households plumbed 30%, some households plumbed 57%, all households plumbed 13% 
	Birth weight, gender, healthcare options, interpregnancy interval, maternal age/education, missing values, parity, prenatal care, race, tobacco/alcohol use, year of birth
	Mothers from villages containing high hazard open dumpsite rankings were more likely to be in villages with some or no households with piped water compared to mothers from villages with low hazard ranked dumpsites.

	INDOOR AIR QUALITY
	
	
	

	Use of wood for heating or cooking
	
	
	
	

	Bruden et al., 2015
	Use of wood for heating
	LRTI, RSV
	(UNADJUSTED) LRTI RR: 1.00 (95% CI: 0.95-1.07); RSV RR: 1.02 (95% CI: 0.93-1.15)
	Coastal community, community size, healthcare access, household crowding, period, poverty, lack plumbing
	Hospitalizations for LRTIs and RSV not significantly associated with proportion of households using wood for heating 

	Bulkow et al., 2012
	Woodstove for heating and/or cooking in house
	hMPV, hPIV, LRTI, RSV 
	(UNADJUSTED) hMPV OR: 1.61 (P=0.351); hPIV OR: 1.43 (P=0.624); RSV OR: 1.22 (P=0.686); unknown viral pathogen OR:3.43 (P=0.01) (ADJUSTED) LRTI OR: 2.21 (95% CI: 1.20-4.10); unknown viral pathogen OR: 6.23 (P=0.01)
	Bottle fed, medically high-risk, regularly vomiting after feeding, 2 or more rooms with sinks in house
	Increased risk of hospitalizations for LRTIs associated with woodstove use in homes

	Morris et al., 1990
	 Wood-burning stove for heat
	LRTI (bronchiolitis or pneumonia)
	(UNADJUSTED) OR: 4.2 (P=0.001) (ADJUSTED) OR: 4.85 (95% CI: 1.69-12.91) (P=0.003)
	Asthma history, respiratory illness exposure, running water 
	Higher risk of LRTIs associated with children living in homes with a wood-burning stove

	Ware et al., 2014
	Woodstove for heating
	Bronchitis, cold, flu, middle-ear infection, pneumonia, throat infection
	(UNADJUSTED) <5 yrs pneumonia OR: 2.1 (95% CI: 0.6-7.2), bronchitis OR: 2.0 (0.7-6.3), flu OR: 1.0 (0.3-3.1), cold OR: 1.8 (0.5-6.3), throat infection OR: 1.9 (0.6-6.1), middle-ear infection OR: 1.7 (0.7-4.4); 5-17 yrs pneumonia OR: 1.5 (0.6-4.0), bronchitis OR: 1.5 (0.7-3.3), flu OR: 1.0 (0.5-2.3), cold OR: 1.0 (0.5-2.0), throat infection OR: 1.5 (0.8-3.0), middle-ear infection OR: 1.2 (0.6-2.3)
	Age of house, ventilation/purification, crowding, heating, household smoker, mold
	Increased risk for respiratory infection among children living in homes heated exclusively with wood stoves compared to homes heated exclusively with fuel oil, but associations not statistically significant

	Robin et al., 1996
	Cooked with wood-burning stove, measured respirable particle concentration ≥65 µg/m3
	ALRI
	(UNADJUSTED) OR any wood vs. gas/electricity alone OR: 5.0 (95% CI: 0.6-42.8); respirable particle concentration ≥65 µg/m3 vs. lower concentration of respirable particles OR: 7.0 (95% CI: 0.9-56.9)
	Access to clinic/hospital, no. of rooms, no. of children in home, indoor air respirable particles ≥65 µg/m3, primary caretaker other than mother, running water, smoker in household, smoking of ceremonial herbs, type of home
	Increased risk of ALRI was associated (although CI was wide) with cooking with wood-burning stoves and higher indoor air concentrations of respirable particles 

	Singleton et al., 2016
	Woodstove for primary heat source, measured pollutants (VOCs - BTEX > 100 µg/m3, CO2 > 1000 ppm, PM2.5 > 25 µg/m3)
	Cough between colds, health provider ever said child had asthma, wheeze between colds,
	(ADJUSTED) Cough between colds: woodstove for primary heat source OR: 3.18 (P=0.027), BTEX>100 µg/m3 OR: 4.42 (P<0.001), PM2.5 > 25 µg/m3 OR: 2.18 (P=0.026); wheezing between colds OR: 1.88 (P=0.068) for BTEX>100 µg/m3; ever said child had asthma OR: 3.02 (P=0.031) for BTEX>100 µg/m3, OR=0.38 (P=0.112) for CO2>1000 ppm 
	Average PM2.5 > 25 µg/m3, BTEX > 100 µg/m3, CO2 > 1500 ppm; household crowding, mold in child's bedroom, piped water/sewer system, RH, smoker in household
	Higher risk for cough between colds associated with primary wood heat, VOCs > 100 µg/m3, and PM2.5 > 25 µg/m3; higher risk of wheezing between colds and asthma diagnosis associated with VOCs > 100 µg/m3

	Other
	
	
	
	
	

	Morris et al., 1990
	Dirt floor
	LRTI (bronchiolitis or pneumonia)
	Too few controls with a dirt floor for OR
	Family history of asthma, respiratory illness exposure, running water, wood-burning stove
	-

	Surdu et al., 2006
	Garage attached to home
	Asthma
	(UNADJUSTED) OR: 1.31 (90% CI: 0.39-4.43)
	Asthma history; smoking in house; born before due date; breastfed; burn-barrel near home; insects in house; day-care first 2 years of life; moist walls, ceilings, carpets, furniture; mold in house; pets; smoking during pregnancy
	Non-significant increased risk of asthma associated with families with a garage attached to house

	Ware et al., 2014
	House built before 1985
	Bronchitis, cold, flu, middle-ear infection, pneumonia, throat infection
	(UNADJUSTED) <5 yrs bronchitis OR: 0.2 (0.1-0.6), cold OR: 0.2 (0.1-0.7), flu OR: 1.2 (0.5-2.6), middle-ear infection OR: 0.6 (0.3-1.3), pneumonia OR: 1.2 (95% CI: 0.4-3.1), throat infection OR: 1.3 (0.6-3.0); 5-17 yrs bronchitis OR: 0.6 (0.3-1.1), cold OR: 0.9 (0.5-1.6), flu OR: 1.2 (0.7-2.0), middle-ear infection OR: 0.9 (0.5-1.3), pneumonia OR: 1.2 (0.6-2.5), throat infection OR: 0.9 (0.6-1.5)
	Age of house, ventilation/ purification, crowding, heating, household smoker, mold
	Lower reported prevalence of bronchitis among children less than 5 years associated with residence in an older home (built before 1985) 

	INDOOR WATER/AIR QUALITY
	
	

	Bulkow et al., 2012
	Mold
	LRTI
	(UNADJUSTED) OR: 1.21 (95% CI: 0.74-1.97)
	Bottle fed, medically high-risk, vomiting after feeding, woodstove, rooms with sinks in house
	Hospitalizations for LRTI not associated with homes with visible mold

	Surdu et al., 2006
	Mold
	Asthma
	(UNADJUSTED) OR: 0.83 (90% CI: 0.30-2.29)
	See above
	No relationship found between asthma and mold in homes

	Ware et al., 2014
	Mold
	Bronchitis, cold, flu, middle-ear infection, pneumonia, throat infection
	(UNADJUSTED) <5 yrs bronchitis OR: 1.7 (0.6-4.3), cold OR: 2.4 (0.6-8.7), flu OR: 2.5 (1.0-6.1), middle-ear infection OR: 2.2 (1.0-5.0), pneumonia OR: 1.3 (95% CI: 0.5-3.5), throat infection OR: 1.8 (0.7-4.5); 5-17 yrs bronchitis OR: 1.6 (0.9-3.0), cold OR: 1.7 (0.9-3.3), flu OR: 2.0 (1.1-3.7), middle-ear infection OR: 1.8 (1.2-2.7), pneumonia OR: 1.6 (0.5-2.3), throat infection OR: 1.6 (1.0-2.8)
	Age of house, ventilation/ purification, crowding, heating, household smoker
	Non-significant elevated prevalence of reported respiratory infections associated with reported concerns about indoor mold

	Petersen et al., 2003
	Mold
	CRD
	(UNADJUSTED) n=9/22 interviewees had opinions of mold as a contributing factor of CRD
	Allergy, genetic/familial, inhalant abuse, nutrition practices, SE conditions
	-

	OUTDOOR AIR QUALITY
	
	

	Surdu et al., 2006
	Burn-barrel near home
	Asthma
	(UNADJUSTED) OR: 1.56 (90% CI: 0.52-4.74)
	See above
	Non-significant increased risk of asthma associated with outdoor air pollution (a burn-barrel within 5-minute walk from house)

	Ware et al., 2014
	Outdoor smoke
	Bronchitis, cold, flu, middle-ear infection, pneumonia, throat infection
	(UNADJUSTED) <5 yrs bronchitis OR: 1.8 (0.6-4.8), cold OR: 0.9 (0.2-3.7), flu OR: 1.3 (0.5-3.6), middle-ear infection OR: 1.9 (0.7-5.4), pneumonia OR: 1.8 (95% CI 0.6-5.6), throat infection OR: 1.4 (0.5-4.4); 5-17 yrs bronchitis OR: 1.4 (0.7-2.8), cold OR: 2.0 (0.8-4.5), flu OR: 1.3 (0.7-2.4), middle-ear infection OR: 1.4 (0.7-2.9), pneumonia OR: 1.5 (0.6-3.7), throat infection OR: 1.0 (0.5-1.8)
	Age of house, change ventilation/ purification, crowding, heating, household smoker, mold
	Non-significant elevated prevalence of reported respiratory infections associated with reported concerns about outdoor sources of smoke

	Petersen et al., 2003
	Steam baths/housing sand dust
	CRD
	(UNADJUSTED) n=22/22 interviewees had opinions of steam from outdoor baths and smoke from active/passive cigarettes and n=16/22 interviewees of dust from river sandbars, building sand pads, or roads with motorized traffic as contributing factors of CRD
	See above
	-

	FARM OPERATIONS
	
	
	
	

	Goldcamp et al., 2006a
	Living on farm
	Non-fatal injury
	(UNADJUSTED) AI household youth living on farms rate of 24.0 injuries per 1,000 household youth (95% CI: ±4.4), no. of injuries 177 (95% CI: ±31), 50.9% of total injuries among racial minorities; injury rate among all racial minority youth: 12.2 (CI: ±1.7); rate ratio between injury rates for AI youth for work injuries and non-work injuries:1.3 (17.8 per 1,000 youth, 95% CI: 12.7-22.9; 13.8 per 1,000 youth, 95% CI: 11.8-15.85)
	Age, farm type, race, sex, work status
	AI youth living on farms had almost double the overall injury among all racial minority household youth. Work-related injury rates for AI youth living on farms were greater than non-work injuries.

	Goldcamp et al., 2006b
	Living on farm
	Non-fatal injury
	(UNADJUSTED) 83% of AI household youth living on farms sustained injuries on livestock farm types (rate of 27.0 injuries per 1,000 household youth), rest on crop farms (17%) (rate of 18.9 injuries per 1,000 household youth)
	Age, farm type, sex, work status
	More than half of all injuries to AI household youth on AI-operated farms were due to livestock operations.

	β = beta; µg/m3 - micrograms per cubic meter of air; AI – American Indian; ALRI - acute lower respiratory illness; BTEX - benzene, toluene, ethylbenzene, o-xylene, and m,p-xylene; CI - confidence interval; CO2 – carbon dioxide; CRD – chronic respiratory disease; hMPV - human metapneumovirus; hPIV - human parainfluenza virus; IPD - invasive pneumococcal disease; LRTI - lower respiratory tract infection; OR - odds ratio; PM - particulate matter; PPM - parts per million; RH - relative humidity; RR - relative rate; RSV - respiratory syncytial virus; SE - socioeconomic; VOC – volatile organic compound. 



Table 4. Study findings for stressors from the natural environment.

	Study
	Chemical(s) of interest (media)
	Health outcome(s)
	Effect estimate/ measure of association/ summary measure
	Other variables considered
	Association(s) between chemical and health outcome(s)

	
	
	
	
	
	

	RESIDENTIAL PROXIMITY TO POLLUTED LANDSCAPES
	
	

	Youth (cohort from same territory)
	
	
	

	Schell et al., 2004
	p,p'-DDE, HCB, mirex, PCBs, lead (blood)
	Thyroid function
	Sum of 8 persistent PCBs: TSH β=0.29 FT4 β=-0.30 (P≤0.05) T4 β=-0.35 T3 β=-0.08; p,p'-DDE: TSH β=0.09 FT4 β=-0.01 T4 β=-0.03 T3 β=0.07; HCB: TSH β=-0.02 FT4 β=-0.08 T4 β=-0.02 T3 β=-0.04; mirex: TSH β=-0.04 FT4 β=-0.01 T4 β=-0.09 T3 β=-0.16; lead: TSH β=0.02 FT4 β=0.03 T4 β=0.02 T3 β=0.24 
	Age, lipids, other toxicants (p,p'-DDE, HCB, lead, mirex), sex, sum of 8 persistent PCBs as measure of PCB body burden, time of sample collection
	Decreased levels of measures of thyroid function were significantly associated with increased persistent PCBs levels

	Schell et al., 2008
	p,p'-DDE, HCB, PCBs, lead, mercury (blood)
	Thyroid hormone levels
	TSH levels: persistent 8 PCBs β=0.431 (P=0.004), p,p'-DDE β=-0.076 (P=0.488), HCB β=0.084 (P=0.426) lead β=-0.017 (P=0.575), mercury β=-0.026 (P=0.628); FT4 levels persistent PCBs β=-0.099 (P=0.015), p,p'-DDE β=-0.003 (P=0.926), HCB β=-0.027 (P=0.351), lead β=0.001 (P=0.885), mercury β=0.007 (P=0.617) 
	Age, breastfeeding, cholesterol, duration between interview and blood draw, sex, time of blood collection, triglycerides
	Decreased levels of measures of thyroid function were significantly associated with increased persistent PCB levels

	Schell et al., 2009
	p,p'-DDE, HCB, PCB groups by chlorination and structure (blood)
	Thyroid function
	TPOAb levels among those who were breastfed: p,p'-DDE β=0.34 (P=0.05); HCB β=0.05 (P=0.76); mirex β=0.09 (P=0.56)
	Age, BMI, breastfeeding, diet, education, height, material well-being, sex, tobacco/alcohol use, weight
	Increased TPOAb levels associated with significantly higher levels of all PCB groupings (except non-persistent PCBs) and levels of p,p'-DDE

	Newman et al., 2006
	PCBs (sum of 16 PCB congeners detected in 50% or more of samples) (blood)
	Cognitive function
	(ADJUSTED) Relationships between summary PCB levels (ΣPCB50%) and cognitive outcome measures with P-values <0.05: long term memory tests - Delayed Recall Index β = -3.563, Long Term Retrieval β = -6.894; and Comprehension-Knowledge β = -4.590
	Mother (e.g., cognition, smoking); adolescent (e.g., breastfeeding, other toxicants (p,p'-DDE, HCB, lead, mercury, mirex))
	Decreased test scores for long-term memory and comprehension-knowledge associated with increased concentrations of PCBs

	Newman et al., 2009
	PCBs (specific congeners grouped by structure: dioxin-like or non-dioxin-like and by persistence: high or low) (blood)
	Cognitive function
	(ADJUSTED) Relationships with P-values <0.05: Σdioxin-like PCBs50%: Ravens (measure of intellectual ability and reasoning skills) β=-0.16 r2=18%, Delayed Recall β=-0.16 r2=13%, Long Term Retrieval β=-0.16 r2=11%;  Σnon-dioxin-like PCBs50%: Ravens β=-0.08 r2=17%, Delayed Recall β=-0.21 r2=13%, Long Term Retrieval β=-0.25 r2=11%; Σpersistent PCBs50%: Delayed Recall β=-0.22 r2=13%, Long Term Retrieval β=-0.20 r2=12%, Auditory Processing β=-0.23 r2=12%; Σlow-persistent PCBs50%: Delayed Recall β=-0.16 r2=13%, Long Term Retrieval β=-0.22 r2=12%
	Age, BMI, breastfeeding, cholesterol/ triglyceride level, other toxicants (HCB, p,p'-DDE, mirex, blood lead, mercury), maternal BMI/ cognitive scores, smoking during pregnancy, SE status, sex 
	Decreased test scores for long-term memory (Delayed Recall and Long Term Retrieval) associated with increased concentrations of PCB groupings by persistence and dioxin-like/non-dioxin-like congeners

	Newman et al., 2014
	PCBs (sum of persistent congeners that may have been active throughout participants' lives or prenatally, found in at least 50% of participants) (blood)
	ADHD
	(ADJUSTED) Only association with P-value <0.05 between summary measure of persistent PCBs and ADHD score (Impulsive-hyperactive Conners parent T-scores) β=-3.84 
	Age, BMI, lipids, maternal factors (BMI, breastfeeding duration, cognitive ability, pregnancy, SE status, smoking during pregnancy), other toxicants (p,p'-DDE, lead, HCB, mercury), tobacco/ alcohol use 
	No evidence of adverse effects of persistent PCB levels on ADHD-like behavior

	Denham et al., 2005
	p,p'-DDE, HCB, mirex, PCBs, lead, mercury 
	Timing of menarche
	Pre- or post-menarcheal status (binary logistic regression) mean-centered levels: p,p'-DDE (ppb) β=-0.37 (P=0.66), group of estrogenic PCBs (ppb) β=2.13 (P=0.04), HCB (ppb) β=0.12 (P=0.93), lead (µg/dL) β=-1.29 (P=0.01), mercury (µg/dL) β=0.16 (P=0.78)
	Age, BMI, SE status
	Lower probability of reaching menarche significantly associated with higher lead levels and earlier age at menarche with higher PCB levels

	Ernst et al., 1986
	Fluoride from aluminum smelter (urine)
	Lung function
	Only significant association of lung function with exposure: among boys, lung function CV/VC% high exposure adjusted mean 8.25 (SEE=1.02) low exposure mean=5.36 (SEE=1.07) P-value for differences=0.05; only significant association of lung function with urinary fluoride: among boys, CV/VC% slope 4.78 (P=0.02); among girls, CV/VC% 4.40 (P=0.01) 
	Age, height, smoking, time since last cold, weight
	Increased closing volume (may be indicative of small airway abnormalities) significantly associated with living near smelter 60% of lifetime among boys and increasing levels of urinary fluoride

	Gallo et al., 2011
	p,p'-DDE, HCB, PCBs (blood)
	-
	Geometric mean concentrations breastfed/non-breastfed: total PCBs 0.87/0.78 (P=0.04); Σ14 PCB50% 0.47/0.40 (P=0.02); Σ9 persistent PCBs 0.35/0.29 (P<0.01)); Σ5 non-persistent PCBs 0.10/0.11 (P=0.41); p,p'-DDE 0.33/0.32 (P=0.69); HCB 0.03/0.03 (P=0.27) 
	Age, BMI, breastfeeding, diet, education, medications, recreational/traditional activities, SE status, sex, tobacco/ alchohol use
	-

	Schell et al., 2003
	p,p'-DDE, HCB, mirex, PCBs, lead, mercury (blood)
	-
	Breastfed/non-breastfed ratios of geometric mean concentrations: total PCBs 1.13=1.74/1.53 (P≤0.001); ΣPCB50% (congeners with ≥50% detection rate) 1.28=0.76/0.59 (P≤0.001); ΣPCB75% 1.32=0.60/0.45 (PP≤0.001); Σpersistent PCBs 1.39=0.46/0.33 (P≤0.001); p,p'-DDE 1.45=0.45/0.31 (P≤0.001); HCB 1.07=0.04/0.03; mirex 1.26~0.02/0.02 (P=0.059); lead 1.03=0.72/0.70 (P=0.869); mercury 0.96~0.09/0.09 (P=0.639) 
	-
	-

	Youth (other AI cohort)
	
	
	
	

	Malcoe et al., 2002
	Lead from former uranium mining region (blood concentrations and residential environmental levels in dust, paint, soil, water)
	-
	Median blood lead levels (mg/kg) for American Indian (5.0) and White (5.0) children (P=0.48); median mean soil levels (mg/kg) for American Indians (103) and Whites (148) (P=0.03) mean soil correlation 0.32 (P<0.001) front yard soil 0.32 (P<0.001) back yard soil 0.27 (P<0.001) mean sill dust 0.19 (P=0.005) mean floor dust 0.34 (P<0.001) child's bedroom floor dust 0.24 (P<0.001) exterior paint index 0.12 (P=0.080) interior paint index 0.13 (P=0.051) water -0.01 (P=0.92); associations with P-values <0.05 mean soil lead β=0.74 (P=0.002) mean floor dust lead loading β=0.45 (P=0.02)   
	Caregiver education, child's hygiene, mouthing, poverty
	-

	Mothers/infants (cohort from same territory)

	Fitzgerald et al., 1998
	PCBs (total PCBs - summed each of 68 PCB-containing zones or peaks) (breast milk)
	-
	(ADJUSTED) Geometric mean breast milk total PCB concentration (ppm, fat basis) AI and control (rural White) mothers who gave birth 1986-1989: 0.602 vs. 0.375 (P<0.01); 1990: 0.352 vs. 0.404; 1991-1992 0.254 vs. 0.318. Geometric mean breast milk concentrations (ppb, fat basis) for greatest concentrations of specific PCB congeners 1986-1989 AI vs. control mothers, all pairwise comparisons had P-values less than 0.05: #138 53.5 vs. 29.9; #153 49.8 vs. 32.8; #99 32.9 vs. 14.8.
	Alcohol consumption/ antibiotic use before pregnancy, maternal age, previous breastfeeding
	-

	Fitzgerald et al., 2004
	PCBs (air, blood, local fruit and vegetable, local meat, soil, wild duck concentrations among pregnant women)
	-
	(UNADJUSTED) Geometric mean (median) of total PCBs (summed congener concentrations of 68 PCB containing zones or peaks) concentrations in serum of pregnant women: 1.2 ppb (maximum: 7.8); geometric means of 3 leading serum congener-specific PCB concentrations (ppb) IUPAC Nos.: #153 0.092; #138 0.0345; #180 0.0142; surface soil total PCB average (range) concentration (ppb): 62.02 (<0.2-886); local meat: 20.10 (<0.2-69.1); wild duck: 481.54 (<0.2-5970); local fruits and vegetables: 5.33 (<0.2-149.5); average total PCB in air in winter: ≤1 ng/m3 and maximum averages in spring/summer: 9.2-10.8 
	-
	-

	Hong et al., 1994
	PCBs (breast milk)
	-
	(UNADJUSTED) Mean (range) total coplanar PCB (sum of 12 non-ortho- and mono-ortho-substituted PCBs) concentrations in milk fat: 49 ng/g (3.4-178) for AI mothers vs. 55 ng/g (8.4-179) for control mothers (P=0.47). Main contributions of individual non-ortho- and mono-ortho-substituted PCB congeners to total calculated toxic equivalent values were PCB congeners #118 (25.8 pg/g lipid); #126 
(25 pg/g lipid); #105 (10.8 pg/g lipid); and 156 (7.4 pg/g lipid).
	-
	-

	Fitzgerald et al., 2001
	p,p'-DDE, HCB, mirex (breast milk)
	-
	(ADJUSTED) Geometric mean breast milk concentrations (ppb, fat basis) of AI vs. control (rural White) mothers: 1986-1989: p,p'-DDE: 420 vs. 198 (P<0.05), HCB: 1.8 vs. 1.7, mirex: 2.6 vs. 1.2 (P<0.10); 1990: p,p'-DDE: 198 vs. 113 (P<0.05), HCB: 8.7 vs. 11.0, mirex: 2.3 vs. 1.0 (P<0.10); 1991-1992: p,p'-DDE: 183 vs. 190, HCB: 12.5 vs. 14.4, mirex: 3.0 vs. 1.4 (P<0.05)   
	Antibiotic use before pregnancy, BMI, breastfeeding, education, maternal age/height, occupation, parity, tobacco/ alcohol use 
	-

	Mothers/infants (other AI/AN cohorts)
	
	

	Gilbreath et al., 2006a
	Potential exposure to hazardous waste and waste disposal methods from maternal residence in village with open dumpsite(s) at time of birth
	Fetal/neonatal deaths, congenital anomalies
	(ADJUSTED) All deaths: high hazard dumpsite contents rate ratio: 2.04 (95% CI:0.48-8.57) vs. moderate hazard dumpsite contents; other congenital anomalies: high hazard dumpsite contents rate ratio: 4.27 (1.76-10.36) compared to moderate hazard dumpsite contents
	Gender, healthcare options, interpregnancy interval, maternal age/education, missing values, piped water, prenatal care, race, tobacco/alcohol use 
	Infants from mothers who lived in villages containing open dumpsites with high hazard dumpsite contents were more likely to have other congenital defects

	Gilbreath et al., 2006b
	Potential exposure to hazardous waste and waste disposal methods from maternal residence in village with open dumpsite(s) at time of birth
	Adverse birth outcomes
	(ADJUSTED) Low birthweight: high hazard dumpsite ranking OR 2.06 (95% CI: 1.28-3.32), intermediate dumpsite hazard OR 1.73 (1.06-2.84) compared to infants from mothers in villages with low hazard dumpsite rankings; IGR: high hazard dumpsite OR 3.98 (1.93-8.21), intermediate hazard dumpsite OR 4.38 (2.20-8.77); preterm birth: high hazard OR 1.24 (0.89-1.74), intermediate hazard OR 0.77 (0.52-1.12) 
	Gender, health care options, interpregnancy interval, maternal age/education, missing values, parity, piped water, prenatal care, race, tobacco/alcohol use
	Higher proportion of infants from mothers in villages with high or intermediate hazard ranked open dumpsites had low birth weight or intrauterine growth retardation compared to infants from mothers in villages containing low ranked dumpsites

	Orr et al., 2002
	COIs, inorganic compounds, nitrates/nitrites, pesticides, VOCs from mother's residence at time of delivery in same census tract as hazardous waste sites
	Birth defect
	(ADJUSTED) Greatest OR among AI/Alaska Natives for spina bifada (OR: 7.35, 95% CI: 1.01-53.44), NTDs (OR: 5.51, 0.74-40.87), oral clefts (OR: 2.45, 0.70-8.56); greatest OR among Hispanic/Latinos for anencephaly 1.70 (95% CI: 0.69-4.18); greatest OR among Black/African Americans for integument 1.19 (95% CI: 0.77-1.83); greatest OR among Asian/Pacific Islanders for anencephaly 4.30 (95% CI: 1.42-13.03); greatest ORs between potential exposure and any birth defect for all groups for COIs (OR: 1.30, 1.02-1.67), nitrates/nitrites (OR: 1.27, 0.68-2.36), pesticides (OR: 1.18, 0.97-1.43) 
	Maternal age, prenatal care
	Greatest increased risk of adverse birth outcomes among AI/Alaska Natives from potential exposure to contaminants vs. controls (same counties, no birth defect)

	Shields et al., 1992
	Radiation from former uranium mining region
	Adverse birth outcomes 
	Only statistical significant association when mother lived near tailings/mine dump and adverse birth outcome (group of outcomes included hip dysplasias and dislocations OR 2.71, 95% CI: 1.09-7.64). Significant associations found when mother (OR=2.05, 1.16-3.76) or father (OR=2.56, 1.14-6.28) worked at electronics plant (worker exposures included variety of chemicals/solvents) and all adverse birth outcomes and for group of outcomes as above when mother worked at plant (OR=2.71, 1.09-7.64).
	Mother's co-morbidities (e.g., tobacco/alcohol use), period of birth by 6-yr intervals
	Increased risk of adverse birth outcomes significantly associated with mother living near uranium mine tailings/dumps; also independently associated when either parent worked at electronics plant

	DIETARY CONSUMPTION
	
	
	
	

	Monheit et al., 2008
	Herbicide (fluridone concentrations in aquatic vegetation, sediment, water)
	-
	(UNADJUSTED) Maximum fluridone concentration in vegetation: 3.4 ppb; sediment: 65 ppb; water: 0.3 ppb; hazard quotient (compared ADD with non-carcinogenic reference dose) for child "worse-case" scenario for vegetation: sub-chronic (1 yr): 4.0E-05, chronic (6 yrs): 2.5E-04; sediment sub-chronic: 1.1E-06, chronic: 6.8E-06; water sub-chronic: 2.5E-07, chronic: 1.5E-06. Found little to no hazard of adverse effects from consuming vegetation.
	Tule vegetation harvesting
	-

	Xue et al., 2014
	PCBs (blood)
	-
	(ADJUSTED) Among younger age group (12-≤30 years), A/P/N/M had highest total PCB concentrations (0.6 ng/g) compared to other racial/ethnic groups. Among younger age group, highest daily average fish consumption for A/P/N/M = 0.3 g/kg. Pearson correlation coefficient=0.07 (P<0.01) between fish consumption and total blood PCB concentrations
	Age, gender, region, other racial/ethnic groups, survey periods
	-

	β = beta; p,p'-DDE - p,p'- dichlorophenyldichloroethylene; r2- coefficient of determination; ADD - average daily dose; ADHD - attention deficit hyperactivity disorder; AI/AN – American Indian/Alaska Native; A/P/N/M - Asian/Pacific/Native American/Other Multiracial; BMI - body mass index; CI - confidence interval; COI - cytochrome oxidase inhibitor; CV/VC% = closing volume as percent of vital capacity; FT4 - free thyroxine; HCB - hexachlorobenzene; IGR – intrauterine growth retardation; MUS - musculoskeletal; NTD - neural tube defect; OR - odds ratio; PCB - polychlorinated biphenyl; PPM - parts per million; PPB - parts per billion; SE - socioeconomic; SEE - standard error of estimate; T3 - triidothyronine; T4 - total thyroxine; TPOAb - anti-thyroid peroxidase; TSH - thyroid stimulating hormone; VOC - volatile organic compound.
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