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A B S T R A C T

Like many urban areas around the world, Durham and Orange counties in North Carolina, USA are experiencing
population growth and sprawl that is putting stress on the transportation system. Light rail and denser transit-
oriented development are being considered as possible solutions. However, local agencies and stakeholders are
concerned the light rail may worsen housing affordability and have questioned whether investment in both light
rail and dense redevelopment are necessary to achieve community goals. We developed an integrated system
dynamics model to quantitatively explore the outcomes of these land use and transportation options across
multiple societal dimensions. The model incorporates feedbacks among the land, transportation, economic,
equity, and energy sectors. This paper uses the results of four model scenarios, run between 2000 and 2040, to
address two main questions: (1) what role does redevelopment play in capturing the socioeconomic benefits of
transit infrastructure investment? And (2) how do redevelopment and light-rail transit interact to affect housing
and transportation affordability? We find that transit investment and dense redevelopment combine synergis-
tically to better achieve the goals of the light-rail line, including economic development, mobility, and compact
growth. However, housing affordability does worsen in the combined scenario, as transportation-cost savings are
not sufficient to offset the rise in housing costs. We emphasize that model users may input their own assumptions
to explore the dynamics of alternative scenarios. We demonstrate how spatially-aggregated systems models can
complement traditional land use and transportation models in the regional planning process.

1. Introduction

The Triangle region of North Carolina, USA is a rapidly growing
area currently facing a common challenge among cities around the
world: a sprawling pattern of growth, leading to a growing separation
between people’s homes and their workplaces, putting added stress on
the transportation system.

To address this issue, a light-rail transit system has been proposed to
connect the town of Chapel Hill and city of Durham along a heavily-
used commuting corridor (Fig. 1). In conjunction with this proposal,
planners are considering rezoning for denser redevelopment around the
proposed transit stations in order to concentrate growth and limit
sprawl (Triangle Transit, 2012). The stated goals of the light-rail project
include promoting economic development, improving mobility, and
increasing compact, mixed-use development (Triangle Transit, 2012).
However, local agencies and stakeholders are concerned that the light-

rail line and associated economic and land development may worsen
housing affordability and displace transit-dependent populations
(Triangle Transit and TJCOG, 2013).

Local and regional planning organizations have jointly developed
detailed land-use allocation and transportation demand models to
forecast the impact of alternative transportation and land use scenarios
(TJCOG, 2014; TRM Service Bureau and TRM Team, 2012). These are
essential for long-range planning. However, because the existing
models rely on static land-use, economic, and demographic projections,
they do not address feedbacks and synergies caused by complementary
policy options, and were not designed to address affordability and en-
vironmental impacts.

The Durham-Orange Light Rail Project System Dynamics (D-O LRP
SD) model can both help fill this gap locally and demonstrates how
spatially aggregated SD models generally can complement current land
use and transportation-planning models. It identifies the mutually
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reinforcing relationships between compact development and transit
investments and their social, economic, and environmental benefits and
tradeoffs, and provides a prototype for how similar models could be
constructed to suit other cases around the world. In this paper, we use
results from four scenarios in the D-O LRP SD model to address two
main questions: (1) what role does redevelopment play in capturing the
socioeconomic benefits of transit-infrastructure investment? and (2)
how do redevelopment and light-rail transit interact to affect housing
and transportation affordability?

2. Literature review

Scenarios have been used to explore alternative futures in the land-
use planning literature since the 1960s (Doxiades, 1966; Wallace-
McHarg Associates, 1964). Though computer modeling has enabled
scenarios to become more detailed, complex, and validated, the func-
tions remain the same. Rather than forecast the future, scenario sets
serve as a bridge between modelers and stakeholders and stretch users’
thinking and perspectives, integrating knowledge to facilitate compre-
hension of a ‘bigger picture’ (Xiang & Clarke, 2003). More than just the
outputs of computer models, scenario sets are curated from among the
thousands possible, and interpreted to provide vivid narratives
(Schoemaker, 1995; Xiang & Clarke, 2003). In this way, good scenario
sets help to overcome cognitive biases and serve as a platform for
consensus-building (Godet, 2000; Schoemaker, 1995; Xiang & Clarke,
2003).

In the 1990s, urban scenario planning began to use models that
merged land use and transportation (Bartholomew& Ewing, 2009).
Initially, these were treated using separate models, where the outputs of
a land use model were used as inputs into a transportation-demand
model (Aljoufie, Zuidgeest, Brussel, van Vliet, & van Maarseveen,
2013). However, that approach was limited in its ability to capture the
dynamics of land use and transportation systems; relationships were
traditionally unidirectional, and therefore did not allow transportation
changes to affect land use, and their sequential processing did not allow
for internal feedbacks (Haghani, Lee, & Byun, 2003). Increasingly, in-
tegrated models that allow bidirectional impacts are being developed,

creating a class of tools called land use and transport interaction (LUTI)
models (Waddell, 2011; Wegener, 2004).

A review of the literature shows there is growing interest in ex-
panding LUTI models to address their implications for urban sustain-
ability, as indicated by Geurs and Van Wee (2004). They reviewed LUTI
models that incorporate sustainability indicators to some degree.

However, this approach has challenges. Because LUTI models re-
quire more data from a diversity of fields, it is challenging to quantify
several social, economic, and environmental indicators with con-
fidence. Conventional econometric and optimization models excel at
simulating spatial and temporal development patterns on the basis of
historical data (Santé, García, Miranda, & Crecente, 2010), and are less
focused on how socioeconomic factors drive local land use and devel-
opment (Han, Hayashi, Cao, & Imura, 2009). Geurs and Van Wee, 2004
(2004) concluded that contemporary LUTI models did not address
macro-economic impacts of land use and transportation, nor many so-
cial or health effects. Finally, conventional models are not designed to
address delays among urban activities, as optimization approaches
primarily provide information on the optimal state of the system, rather
than on transitions. This means that the models assume that urban
systems are in a state of equilibrium, which is rarely the case (Haghani
et al., 2003; Vina-Arias, 2013).

System Dynamics (SD) models complement traditional LUTI models
by providing a simpler framework to capture the dynamic properties of
systems through the explicit representation of feedback loops. By fo-
cusing on causal relations and simulating “what if” scenarios, they can
more easily incorporate a variety of sustainability indicators (Sterman,
2000), and are therefore useful for evaluating responses to policy sce-
narios on transit investment and development (Han et al., 2009). In
addition, their relative simplicity and low data-intensity make it easier
to examine demographics, land use, transportation, water, and energy
use in an integrated fashion (Rickwood et al., 2007). On the other hand,
SD models are not spatially explicit and lack the detail that other
models can provide. Therefore, the core contribution of SD models is
the provision of a more comprehensive view of the urban system by
integrating processes at different time scales (Abbas & Bell, 1994).

One of the first applications of SD was as a method to simulate

Fig. 1. Map of study area.
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urban growth and change (Forrester, 1969). More recently, SD models
have been used to address a variety of issues in urban land use, trans-
portation, and sustainability all around the world. Land use models
have addressed housing supply and demand and urban renewal in the
Netherlands (Eskinasi, Rouwette, & Vennix, 2009) and the limits of
growth under different urban development schemes in Hong Kong
(Shen et al., 2009). Transportation-focused models have addressed
policies to manage congestion in China (Wang, Lu, & Peng, 2008) and
policies to impact bicycling in New Zealand (Macmillan et al., 2014). A
few have focused on land use and transportation interactions. Haghani
et al. (2003) developed a model to project the impacts of highway ex-
pansion on land usage and transportation performance measures in
Maryland, USA. Several groundbreaking models have combined ele-
ments of cellular-automata models and SD to capture complex dy-
namics at a granular scale (Han et al., 2009; Lauf, Haase, Hostert,
Lakes, & Kleinschmit, 2012; Pfaffenbichler, 2011).

However, there remains a need to integrate social, economic, and
environmental dynamics. Few models incorporate land use and trans-
portation interaction with macroeconomic, environmental, and health
indicators, allowing for feedbacks among them (Haghani et al., 2003;
Wegener, 2004). We take a step towards such an integrated urban-
systems model with a model structure that emphasizes feedbacks, in-
tegrates multiple urban systems, and allows users to test com-
plementary policies and their benefits and tradeoffs.

3. Methodology

3.1. System dynamics approach

System Dynamics (SD) is a policy-oriented technique that provides a
framework for the design of policies and management of systems to
achieve improved system behavior (Sterman, 2000). They do not pro-
vide predictions of the future, nor are they designed to optimize a
system. Instead, SD models allow users to test the direct, indirect, and
induced effects of interventions in “what if” scenarios. SD models are
characterized by four key properties: limiting factors, delays, non-
linearities, and a feedback-loop structure built on the basis of stocks and

flows (Forrester, 1969; Meadows &Wright, 2008; Sterman, 2000).

3.2. Study area and data

The D-O LRP SD model was constructed based on a conceptual
model developed in collaboration with stakeholders, including re-
presentatives from the regional transit authority and city and county
departments of health, stormwater management, land use planning,
and transportation planning. The model consists of 7 interdependent
sectors: land use, transportation, energy, economy, equity, water, and
health.

The model operates at two geographic scales: Tier 2 – defined by the
boundary of the Durham-Chapel Hill-Carrboro Metropolitan Planning
Organization; and Tier 1 – the combined area of ½-mile-radius zones
surrounding each of the proposed light-rail stations (Fig. 1). Tier 2 was
chosen due to the high availability of data at this scale, while Tier 1 was
chosen as the area likely to show the largest impacts in response to the
rail. Model variable outputs are reported for each Tier on an annual
basis between 2000 and 2040, with a model time-step of 0.0625 years,
though, in this paper, outputs are only discussed for Tier 1. Model
scenarios run in only a few seconds on a typical desktop computer.

Partly as a result of the planned light-rail line, there are an abun-
dance of data and projections available for the area through the re-
gional land use and transportation comprehensive planning efforts. In
order to make the D-O LRP SD model complementary to these efforts
and to ensure consistency across model results, we aligned many as-
sumptions with those used by the regional land-use allocation model
(TJCOG, 2014) and the transportation-demand model used for the 2040
Metropolitan Transportation Plans (MTP) (DCHC MPO, 2013; TRM
Service Bureau and TRM Team, 2012).

Table 1 includes a selection of the key data sources, both historical
and projected, used to initialize, calibrate, and validate the model (BEA,
2014; Chatham County Tax Administration Office, 2014; Durham
County Tax Administration, 2000–2014; Orange County Tax
Administration, 2014; U.S. Census Bureau, 2000, 2014, 2015). Histor-
ical data and local projections were aggregated for the model’s two
geographic boundaries.

Fig. 2. Simplified CLD of the D-O LRP SD Model with core sectors (blue) and output-oriented sectors (yellow). (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)
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3.3. Model structure and specifications

A causal loop diagram depicting the interconnections among key
variables is shown in Fig. 2. Plus (+) signs indicate a positive asso-
ciation between variables, and minus (−) signs indicate a negative
association between variables (an increase in A produces a decrease in
B). This paper focuses on outcomes in Tier 1 most strongly impacted by
changes in the land use sector, however Procter et al. (2017) discusses
the energy sector, and forthcoming papers will discuss other model
outcomes impacted by changes in the transportation and economy
sectors in more depth.

In Fig. 2, the primary cross-sectoral feedback loop involving land
use can be seen: employment growth drives growth in nonresidential
floor space (measured in square feet (sq ft)), which increases gross
operating surplus (GOS, the portion of GRP due to production, not
earnings), which raises the gross regional product (GRP), which con-
tributes to an increase in total employment, completing the loop. The
limit on total available land in Tier 1 provides a balancing effect, pre-
venting unlimited growth. There are numerous such reinforcing and
balancing loops throughout the model. For brevity, we present only the
key variables used to estimate land use and affordability in the model.

The Land Use sector comprises three types of stocks: (1) acres of
land, (2) dwelling units, and (3) developed nonresidential sq ft of floor
space. The Equity sector outputs three key indicators: (1) property va-
lues, (2) renter costs, and (3) transportation costs. The categories of
disaggregation, as well as driving factors of these key variables, are
summarized in Table 2.

Beyond the main drivers of change listed, additional variables
mediate the calculation of the key variables. Below, we present equa-
tions for those variables crucial to understanding how the key in-
dicators in the land and equity sectors are calculated. Table 3 lists
which of the variables used in the calculation of the land use and equity
sectors described below are exogenous.

3.3.1. Land sector
The demand for nonresidential floor space (DNFS) is calculated

independently for each land use category, following the general equa-
tion that is standard in land use planning (Durham City-County
Planning Department, 2012):

= ÷DNFS E ESR

Where E is employment, and ESR is the employee space ratio (the
average number of employees per sq ft), with values for each of the four
categories of nonresidential land use (Table 2). This is converted to
acres using floor area ratios (FARs) for each nonresidential land use
category, Tier, and scenario.

Demand for single family and multifamily dwelling units (DDU) is
calculated separately, using distinct values for each factor in the fol-
lowing equation:

= + × ÷ × + ÷ × +

×

DDU EH PG PPH HS year HL SH

EV

(( ) ) (1 ( )) (1 )

Where EH is the equilibrium households (calculated by the population
in households divided by household size), PG is the projected annual
population growth over the next 5 years, PPH is the percent of people in
households, HS is the household size, HL is the average lifetime of
dwelling units, SH is the percent of second homes (applied only to the
calculation of single family dwelling units), and EV is the effect of va-
cancy on the demand for dwelling units. This final variable is an L-
shaped curve with a long tail, indicating that very high vacancy de-
creases demand for dwelling units, but this effect diminishes with lower
vacancy rates. These elements ensure there is always some degree of
endogenous vacancy in the model; the vacancy rate subsequently af-
fects renter costs in the Equity sector. Demand for dwelling units is
converted to demand for residential acres using the average single fa-
mily or multifamily density for the Tier and scenario, and, in con-
junction with demand for nonresidential acres, drives land conversion.

The gap between demand for acres and the actual developed acres,
for each land use category, feeds the land conversion flows. The total
time for land conversion and construction results in a two-year delay
between demand and realization. If the supplies of both agricultural
and vacant land are depleted, land conversion and construction cease,
constituting a cap on total developed acres, nonresidential floor space,

Table 2
Summary of Primary Variables in the Land Use and Equity Sectors.

Variables Categories of disaggregation Main variables driving changes

Land (in acres) Vacant, Agricultural, Protected Open Space, Right of Way, Retail,
Office, Service, Industrial, Single Family, Multifamily

Dwelling Units and Developed Nonresidential Floor Area (in
square feet)

Dwelling Units Single Family, Multifamily Population, Vacancy rate
Developed Nonresidential Floor Space

(in sq ft)
Retail, Office, Service, Industrial Employment (disaggregated by the same categories)

Property value Single Family Lot size, available land, income growth, commute time, retail
density, population growth, job density

Multifamily Building size, available land, income growth, commute time,
retail density, population growth, job density

Nonresidential Building size, retail density, employment growth
Renter costs n/a MF property value per DU, MF vacancy rate, GRP growth rate
Transportation costs Fuel cost per VMT, Vehicle ownership and maintenance costs,

Parking costs, Transit costs
Price of gasoline, MPG, Vehicle stock, Parking price, Public
transit fare price

Table 3
List of Exogenous Variables in the Land Use and Equity Sectors.

Exogenous variables

Numerical inputs Policy interventions and
demographic shifts

Birth and death rates Redevelopment of developed land to
higher densities

Effect of developed portion of residential
land on migration

Light rail line construction

Effect of unemployment on net migration
(Tier 1 only)

Residential densities (for new
construction)

Employee space ratios (by employment
category)

Floor area ratios (by land use type,
for new construction)

Percent of people in households Public transit fare price
Average lifetime of dwelling units Parking cost of average trip
Percent second homes Price of gasoline
Effect of vacancy on the demand for

dwelling units
Miles per gallon without congestion

Impervious surface coefficients Earning per employee (by
employment category)

Elasticities governing property values Subsidized dwelling units
Elasticities governing renter costs Percent of people in single family

dwelling units
Percent of MF dwelling units below 75

percent of median renter costs
Household sizes

Poverty threshold
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and dwelling units. While there is ample available land in Tier 2 for
years to come, this cap on land does come into play in Tier 1, con-
tributing to nonlinearities in the model results.

Redevelopment operates by allowing users to set a target percent of
land that is redeveloped to a target density, achieved gradually, be-
tween 2020 and 2040. Acres redeveloped at a higher density in turn
reduce desired acres, all else equal, by satisfying more demand for floor
space or dwelling units on less land. If desired acres drop below the
actual, impervious developed land may become vacant and pervious.
The initial conversion of a portion of land to a higher density modestly
increases nonresidential floor space in Tier 1, which is then amplified
through feedbacks.

Redevelopment can only occur in Tier 1. However, because Tier 1 is
part of Tier 2, the proportional reduction in acres and the proportional
increase in nonresidential floor space and dwelling units are reflected in
Tier 2 outputs. Due to feedbacks in the model, the increase in non-
residential floor space in Tier 1 caused by redevelopment, once added
to Tier 2, spurs more growth in GRP, eventually leading to higher de-
mand for floor space in Tier 2, developed at the default density.
Densities calculated in the land sector, including nonresidential density
per acre, retail density per capita, population density, and intersection
density, subsequently affect outcomes in other sectors of the model,
including property values, energy use, and transportation mode shares.

3.3.2. Equity sector
The Equity sector has few feedbacks to other sectors of the model;

however, it responds to many other sectors and the feedbacks inherent
in them. Here, we present the equations for the primary indicators in
this sector: property values, renter costs, and transportation costs.
Property values are driven by several other variables in the model,
which is evident in the equation for multifamily property value per
dwelling unit (MV):

= × × × × × ×( ) ( ) ( ) ( ) ( )MV MV r r r r r r(i vl
e

inc
e

jd
e

rd
e

ct
e

far
evl inc jd rd ct far

Where MVi is the average multifamily (MF) property value per dwelling
unit (DU) in the initial year (2000). We then include six drivers (relative
to their initial values in 2000, r) and their respective elasticities (e):
vacant land, an indicator of land scarcity (rvl), resident per capita net
earnings (rinc), job density (rjd), retail density (rrd), commute time (rct),
and nonresidential FAR (rfar). Many of these relative values are calcu-
lated in other sectors of the model; for example, commute time is cal-
culated in the transportation sector.

Single family (SF) property value per DU and nonresidential prop-
erty value per sq ft are calculated similarly, although the drivers for
each vary somewhat, according to relationships found in the literature.
SF property value responds to SF densities rather than nonresidential
density. Nonresidential property value only responds to relative em-
ployment, nonresidential density per acre, and retail density per capita.

Renter costs per household (RC) are derived primarily from multi-
family housing costs, because most renters in the area are in apart-
ments:

= × × ×( ) ( ) ( )RC RC r r Ei mvr
e

mv
e

grp
rmvr mv grp

RCi is the initial renter costs per household. Three drivers are included
with their respective elasticities (e) and effect tables (E): relative MF
vacancy rate (rmvr), relative MF property value (rmv), and annual change
in the grp growth rate (rgrp).

Calibration of property values and renter costs was accomplished
through a combination of a diverse set of elasticities obtained from the
literature (Capozza, Hendershott, Mack, &Mayer, 2002;
Dobson & Goddard, 1992; Heikkila, Gordon, Kim, Peiser, & Richarson,
1989; Jud &Winkler, 2002; Kain & Quigley, 1970; Kockelman, 1997;
Srour, Kockelman, & Dunn, 2002; Vina-Arias, 2013). In a several cases,
these elasticities had to be modified to fit the study area, as many
studies provide elasticities for either one metro area or an average for

the nation, and none were found that were specific to the study area.
For example, while an elasticity of +1.09 between population growth
and single family property values from a study at the metropolitan level
(Jud &Winkler, 2002) worked well for Tier 2, that was too strong of a
relationship for Tier 1, where it had to be adjusted down to +0.5.
Details of the calibration and validation can be found in EPA et al.
(2016).

Finally, transportation costs are a sum of parking costs, vehicle fuel
costs, vehicle ownership and maintenance costs, and transit fares.

3.4. Model validation and sensitivity testing

BAU scenario results for more than 20 key variables were validated
against historical and projected data at both Tiers, both visually (by
plotting results and data in a graph) and statistically. Table 1 shows the
R2 value and average absolute percent deviation for a selection of
variables at Tier 1. Several variables, including population and VMT,
were also validated under the LRRD scenario against local projections
under a comparable growth scenario. Fig. 3 shows a data series com-
paring multifamily property value, one of the variables with a lower R2

value, against historical data. This is a key contributor to renter costs in
the model and demonstrates the degree of uncertainty in this output.

Extensive sensitivity testing was also performed to further evaluate
the validity of the model results. Twenty structural and extreme-con-
dition tests were performed on central variables and elements in the
model, where variables were either removed or set to extreme values to
determine which best reproduced historical trends. Elements from the
land and equity sectors tested include land development, the effect of
vacancy on the demand for dwelling units, property value elasticities,
and an extreme population test. Fifteen behavioral and policy sensi-
tivity tests were performed on variables that either were uncertain due
to limited historical data or that were key policy interventions, such as
the effect of the LRT on the demand for nonresidential sq ft, the percent
of net migration to Tier 1 due to the LRT that is external to Tier 2, the
effect of vacant land on property value, the elasticity of MF property
value to building size, and the effect of jobs per commercial acre on
parking costs. The results of these last three tests are described below in
the Discussion section. See EPA et al. (2016) for the full model de-
scription, validation, and sensitivity testing.

4. Results

4.1. Scenarios

Four main scenarios were run in the D-O LRP SD model to simulate
the most likely transportation and land use options for Tier 1 between
2020 and 2040, the impacts of which are also reflected at Tier 2. First,
the Business As Usual (BAU) scenario simulates what would happen if
current demographic, land use, and transportation trends were to
continue and serves as a baseline scenario for comparison.
Nonresidential and residential densities remain constant at their

Fig. 3. Multifamily property value per DU in BAU scenario compared to historical data
2000–2014 in Tier 1. R2 of 0.59 and average absolute percent deviation of 3%.
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average values in 2014.
Second, the Light Rail (LR) scenario simulates the construction of

the proposed 17-mile light rail transit (LRT) line between Durham and
Chapel Hill beginning in 2020 and completed by 2026, and assumes
that the LRT line (1) motivates more people to use public transit than
would an equal number of bus service miles, (2) causes a 10% increase
in demand for nonresidential (excluding industrial) floor space, (3)
increases the share of new jobs that goes to unemployed residents of
Tier 1 rather than to commuters, from 5% to 10%, and (4) increases net
migration in Tier 2 by 1.5 times the increase in Tier 1, on the as-
sumption that additional growth will happen just outside Tier 1. An
increase in demand for nonresidential floor space within a ½-mile range
of station areas, demonstrated through higher property values, is sup-
ported in the literature (Cervero & Duncan, 2002; Debrezion,
Pels, & Rietveld, 2007; Fogarty, Austin, & Center for Transit-Oriented
Development, 2011; Garrett, 2004), as is an increase in the desirability
of living near transit stations (Billings, 2011; Yan, Delmelle, & Duncan,
2012), although the magnitude varies widely and depends on local
conditions.

Third, the Redevelopment (RD) scenario simulates the im-
plementation of zoning to encourage land redevelopment and higher
density in the ½-mile areas that may become station areas. It assumes
(1) that, starting in 2020, 20% of developed land is aimed to be re-
developed to almost three times its existing density by 2040, and (2)
that the share of the population living in single family dwelling units
declines over time in Tier 1, to 25% by 2040, as opposed to remaining
stable at 30.9%, as it does in the BAU scenario. The assumed re-
development density and decline in the share of single family dwelling
units aligns with the assumptions used in the regional land-use allo-
cation model (Green, 2015).

Fourth, the Light Rail + Redevelopment (LRRD) scenario includes
the assumptions tied to both the LR and the RD scenarios, and is the
scenario that most closely aligns with the 2040 MTP.

4.2. Effects of redevelopment and light rail

The LR scenario forecasts improvements in economic indicators,
particularly in Tier 1, the immediate station areas (results are only
presented for Tier 1). The assumed increase in demand for non-
residential floor space acts through a positive feedback loop with GOS
and GRP to increase employment (Fig. 2). By 2040, employment is 15%
higher in the LR scenario than in BAU (Fig. 4). Employment growth in
turn feeds back to increase nonresidential floor space above the original
10% increase to 13% in 2040. Employment growth also spurs im-
migration, leading to growth in dwelling units. However, because this

development takes place at current densities, developed land grows
quickly and soon consumes all available land in the Tier, leading to a
plateau in development (Fig. 5). In contrast, the RD scenario, in the
absence of the rail, does not assume an increase in nonresidential floor
space and therefore leads to limited growth relative to BAU. In fact, the
RD scenario causes a decline in developed land between 2020 and 2040
(Fig. 5), as the increase in density is sufficient to return some developed
land to vacant land. Land is used more efficiently in the RD scenario,
however, with GRP per acre increasing 33% over BAU by 2040. In
contrast, the combination of the increase in demand for nonresidential
floor space due to the LRT and the gradual redevelopment of 20% of
developed land by 2040 to nearly triple the current density in the LRRD
scenario allows for the increase in demand to be met while avoiding the
consumption of all land in Tier 1. As a result, in the LRRD scenario, by
2040, nonresidential floor space is 35% higher than in BAU, compared
to only 13% higher in LR and 4% higher in RD (Fig. 4). Acres of de-
veloped nonresidential land are only 4% higher than in the BAU case,
relative to 13% higher in LR and 20% lower in RD. Employment is 23%
higher than in the BAU case, relative to only 15% higher in LR and 3%
higher in RD (Fig. 4). In the short term, growth in developed land slows
in response to densification. However, due to the feedbacks described
above, developed land in the LRRD scenario surpasses BAU by 2040,
though GRP per acre is 28% higher than BAU (Fig. 5).

Increased economic activity in the model leads to an increase in
property values, particularly nonresidential property value per sq ft. It
is 87% higher than BAU in 2040 in the combined LRRD scenario, in
contrast to 15% higher in LR and 38% higher in RD (Fig. 4). In addition,
increased employment drives down the unemployment rate and sti-
mulates new migration to the area. The resulting population increase
leads to the construction of dwelling units in excess of the increase in
employment, positively affecting the jobs-housing balance, a common
metric of mixed-uses. The jobs-housing balance declines by 2% in the
BAU case between 2020 and 2040 (making it more imbalanced), and
the balance changes little in the LR and RD scenarios alone. However,
in the LRRD scenario, by 2040, the balance is 3.7% higher than BAU,
reflecting a more balanced state (Fig. 4).

The LRRD scenario forecasts large increases in transit and non-
motorized travel, relative to BAU. Public transit travel by residents per
capita (which includes bus transit) increases 172% between 2020 and
2040 in the LR scenario, and 176% in the LRRD scenario (Fig. 6). The
light rail shifts mode share away from driving; between 2020 and 2040
vehicle travel by residents per capita declines 2% in the LR scenario and
1% in the LRRD scenario, relative to a 5% increase in BAU. While the
introduction of the light rail has the largest effect on transit ridership
and nonmotorized travel, due in part to the assumption that each public

Fig. 4. Percent difference from BAU in 2040 at Tier 1
for Light Rail, Redevelopment, and Light Rail +
Redevelopment scenarios.
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transit trip includes a ½ mile of nonmotorized travel, the RD scenario
also contributes. Whereas in BAU public transit travel per capita de-
clines 13% between 2020 and 2040, it only declines 11% in the RD
scenario (Fig. 6). Similarly, nonmotorized travel per capita declines 9%
in the BAU scenario, relative to only a 5% decline in the RD scenario
and a 3% decline in the LRRD scenario.

4.3. Effects on housing and transportation affordability

With increases in jobs, business revenues, density, and accessibility
the station areas become more desirable, causing property values to
increase, in turn driving an increase in renter and owner housing costs.
Multifamily property value per DU is 13% higher in the LRRD scenario
than BAU by 2040, compared to 1% higher in the LR scenario and 4.6%
lower in the RD scenario (Fig. 4). Single family property value per DU is
more stable, at only 2.2% higher in the LRRD scenario by 2040.

Multifamily property value per dwelling unit is the primary con-
tributor to the estimation of renter housing costs. Cumulatively, over
the 2020–2040 period, the average renter is forecasted to pay $8956
more than BAU under the LR scenario, $4504 less in the RD scenario,
and $13,608 more in the combined scenario (or, $648 more, on
average, annually) (Fig. 7). Average transportation costs also rise in the
RD and LRRD scenarios, primarily due to a rise in parking costs. Cu-
mulatively, between 2020 and 2040, the average multifamily house-
hold is expected to spend $871 less on transportation costs in the LR
scenario than in the BAU, $2027 more in RD, and $643 more in the
combined LRRD scenario (or, $31 more, on average, annually).

Determining affordability, however, requires more than just costs; it

is a function of costs relative to income. Therefore, we calculate an
affordability index for lower-income earners in multifamily households
by dividing a per-capita retail earnings indicator by a per-capita
housing and transportation costs indicator. Because the exogenous
projection for per-capita retail earnings rises over time in all scenarios,
the affordability index improves in all scenarios. However, in the LRRD
scenario, it increases only 2% during 2020–2040, relative to a 4% in-
crease in the BAU case (Fig. 8).

The rising employment rate in the LRRD scenario causes a corre-
sponding drop in the poverty rate. This dynamic represents two possible
phenomena: rising employment may employ some previously un-
employed residents, but increasing economic prosperity may also dis-
place poorer residents. The lower poverty rate causes a smaller share of
households with zero cars in the model, a proxy for transit-dependent
households. By 2040, the percent of households with zero cars is 11% in
LRRD, compared to 14% in BAU, both down from 16% in 2020.

5. Discussion

5.1. What role does redevelopment play in capturing the socioeconomic
benefits of transit infrastructure investment?

5.1.1. Light rail alone
Local communities sometimes resist the densification planned to

occur in conjunction with transit projects. However, our model shows
that without the density increase that redevelopment brings, the light
rail has reduced potential to stimulate economic development, a stated
goal of the project. Our default assumption is that investment in the

Fig. 5. Developed land as a percent of available land 2000–2040 in Tier 1
for BAU, RD, LR, and LRRD scenarios.

Fig. 6. Percent change in person miles by mode
2020–2040 in Tier 1 for BAU, Redevelopment, and
Light Rail + Redevelopment scenarios.
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light-rail line spurs 10% more demand for nonresidential development
in the ½-mile-radius station areas. Were this additional development to
take place at the current average density and no redevelopment of
existing parcels took place, as the LR scenario simulates, available land
within the ½-mile walking distance of the transit stations would be
depleted long before all the demand is met. When this limit on land
expansion is met, in 2033, employment growth slows and net migration
declines (Fig. 5).

5.1.2. Redevelopment alone
There are benefits from developing compactly in the absence of

transit; however, our model results confirm what local planners high-
light: compact development is most effective in achieving economic
development and improved mobility when pursued in conjunction with
transit (Durham City-County Planning Department, 2016). Our model
forecasts that redevelopment without light rail fails to stimulate em-
ployment and population growth. Without some stimulus to demand for
nonresidential floor space, whether through light rail investment or
otherwise, employment, GRP, and other economic development in-
dicators in the RD scenario remain similar to BAU throughout the si-
mulation.

5.1.3. Combined effects
When combined, the RD and the LR scenarios unlock larger changes

in key indicators than either does in isolation. First, the untapped
economic potential in the final 7 years of the LR scenario is realized.
This leads to greater than additive impacts in the LRRD scenario. By
2040, nonresidential floor space in Tier 1 is greater than BAU, by more
than the sum of the increase over BAU in the LR scenario and in the RD

scenario (Fig. 4). This higher square footage, made possible by the in-
creased density in the RD scenario assumptions, in turn produces higher
economic development, leading to higher employment. By 2040, em-
ployment and nonresidential property value per sq ft are also higher,
relative to BAU, than in the LR and the RD scenarios summed.

Second, the LRRD scenario improves mobility by alternative modes
disproportionately, with a more than additive increase in transit use
and nonmotorized travel per capita. While the opening of the light rail
causes most of the increase to both indicators, the RD scenario also
contributes (Fig. 6). In the BAU scenario, transit travel per capita and
nonmotorized travel per capita both decline because fuel efficiency is
projected to increase, which lowers the cost of automobile travel and
increases driving relative to transit use. However, both the LR and RD
scenarios blunt this decline. Because the RD scenario increases both
population density and the density of pedestrian-friendly intersections,
it leads to an increase in the mode shares of transit and walking.

Finally, the LRRD scenario develops more land compactly and de-
creases the separation between jobs and housing in more than an ad-
ditive fashion. In the station areas, there are currently far more jobs
than dwelling units, causing an imbalance in the numbers of people
living and working there. The jobs-housing balance is a metric used in
the planning literature as an indicator of mixed uses (Ewing & Cervero,
2010). This balance increases, reflecting more mixed uses, under the
LRRD scenario relative to BAU due to the relationship in the model
between employment growth and immigration. The nonresidential de-
mand stimulated by the light rail, combined with the expansion in ca-
pacity allowed by redevelopment, generates a sufficient employment
gap to bring in higher numbers of residents. In addition, the un-
employment rate drops, making the area more desirable and increasing

Fig. 7. Cumulative costs (2010 dollars) 2020–2040 relative to BAU in Tier
1 per multifamily household for LR, RD, and LRRD scenarios.

Fig. 8. Percent change in affordability measures 2020–2040 in Tier 1
for BAU and LRRD scenarios.
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net migration. With more people come more dwelling units. Neither the
LR nor the RD scenario in isolation can achieve this effect. Although the
jobs-housing balance increases slightly in the short-term in the LR
scenario, it reverses course by 2035 as the land cap is reached and
employment and population growth slows. In the RD scenario, the jobs-
housing balance declines between 2020 and 2040 because there is little
more economic growth than in the BAU scenario; unemployment re-
mains about the same as in BAU, and there is little new incentive for
immigration. However, when the immigration of the LR scenario is
combined with the higher allowable density of the RD scenario, suffi-
cient numbers of new residents increase the jobs-housing balance, re-
presenting an increase in mixed uses.

Therefore, the interaction of the economic growth and transporta-
tion effects of a fixed light-rail line combined with dense redevelopment
better accomplishes the goals of the project. Without a light-rail in-
vestment, redevelopment is unlikely to succeed in achieving the project
goals, such as economic growth, increased mobility, or compact, mixed-
use development (Triangle Transit, 2012). This synergy between the
two complementary scenarios is a finding that would not have been
possible in a traditional sequential land use and transportation model
setting without feedbacks among the land use, economy, and trans-
portation sectors.

5.2. How do redevelopment and light-rail transit interact to affect housing
and transportation affordability?

The forecasted rise in housing costs following the construction of
LRT confirms a main community concern – that with the benefits of
light rail will come a reduction in affordability, potentially displacing
longtime residents and those groups most likely to ride the rail – the less
affluent and the transit-dependent (Horsch, 2015; Triangle Transit and
TJCOG, 2013). In our model, one of the most significant factors af-
fecting residential property values is land scarcity (Capozza et al.,
2002), which in the LR scenario, drives up the cost of housing. There-
fore, policy interventions that relieve pressure on land scarcity may
have the largest mitigating impact on housing costs. The RD scenario
achieves this in two ways: first, dense redevelopment, and second, a
higher proportion of multifamily dwellings. This effect is obvious in the
RD scenario, but in the LRRD scenario the mitigating effect of dense
redevelopment is outweighed by (1) additional development sufficient
to make land similarly scarce as in BAU, (2) the positive effect of rising
incomes on property values, and (3) the relationship between higher
average building sizes (FAR) and property values.

There is great interest in the potential for transit to lower trans-
portation costs sufficiently to offset higher housing costs in transit-or-
iented developments (Center for Neighborhood Technology, 2010). In
this case, our model projects that does not occur. In the LR scenario,

transportation costs do drop relative to BAU, as residents are expected
to drive less after the introduction of rail service. However, transpor-
tation costs make up only about 30% of total housing and transporta-
tion costs, so this drop cannot significantly offset the rise in housing
costs. Furthermore, in the RD and LRRD scenarios, given our assump-
tions, transportation costs rise. Higher density is associated with higher
parking costs, driving up average transportation costs per household by
more than the savings produced by those choosing to take the light rail
line instead. In the LRRD scenario, transportation-cost changes have
relatively little impact on overall housing and transportation costs.
Over the 20-year period between 2020 and 2040, cumulatively, in-
cluding both renter housing and transportation costs, the average
multifamily household in Tier 1 is projected to spend $14,250 more in
the LRRD scenario than in BAU, or $713 more on average annually
(Fig. 7).

There is some uncertainty in this result. Due to a lack of historical or
projected data for renter and transportation costs, we validated model
results for these variables indirectly by validating key inputs.
Multifamily property value, the primary contributor to renter costs, was
validated against historical data and had an R2 of 0.59 and an average
absolute deviation of 3% (Table 1). We also ran sensitivity tests on three
of the key contributors to renter housing and transportation costs: the
effects of land scarcity and of building size on multifamily property
value, and the effect of jobs per commercial acre on parking costs
(Fig. 9). The effects were varied along the estimated range of un-
certainty, plus and minus 50%. Outputs are shown for renter costs,
transportation costs, and the two combined. Though the magnitude
varied, all tests found the same result: transportation costs were never
lower than BAU, and therefore were not sufficient to offset housing cost
increases.

Note, however, that these figures apply only to the average house-
hold. As the Center for Neighborhood Technologies has demonstrated
with their Housing + Transportation Index (2010), whether transit
reduces transportation costs sufficiently to outweigh housing cost in-
creases heavily depends on the characteristics of the household, in-
cluding car ownership, location of residence, income bracket, and
more. Because, in our model, transportation costs rise in the re-
development scenarios primarily due to parking costs, the costs for
households without a car would be much lower. To comprehensively
address the effects of the rail on housing and transportation costs,
disaggregation of households by car ownership and income brackets
would be necessary.

While affordability still improves between 2020 and 2040 in the
LRRD scenario, it suffers relative to BAU. Local employment and
average incomes are projected to rise relative to BAU (Fig. 8). However,
not only do household costs also rise, but they rise more than average
incomes, relative to BAU. This finding confirms community concerns

Fig. 9. Sensitivity of housing and transportation costs to key assumptions.
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regarding affordability and corroborates the need for an emphasis on
expanding subsidized and workforce housing in the station areas. Not
only is this an issue of equity, but also one of ridership. Lower income
populations are more likely to be transit-dependent and therefore to
become regular riders of the light rail line. Economic growth attracts
wealthier residents and worsening affordability may force a dis-
proportionate number of transit-dependent residents to leave, de-
creasing ridership. In our model, by 2040, the percent of households
with zero cars is 3 percentage points lower in LRRD than in BAU. While
local governments’ ability to control the affordability of housing is
limited, policies to encourage density and the construction of multi-
family housing may help keep housing costs down, not only by pro-
viding more affordably sized homes, but also by relieving the pressure
of land scarcity on property values. Conversely, raising the minimum
wage would improve affordability in the face of rising costs. Our model
approach provides an opportunity to test the impact of such changes,
and view the new equilibriums achieved.

5.3. Limitations of the model and research gaps

The D-O LRP SD model has several limitations. First, the model is
not spatially explicit beyond the two urban-scale tiers discussed.
Therefore, redevelopment is portrayed only as densification; we cannot
determine the extent to which land use patterns such as clustering may
impact outcomes. Second, density in our model is a policy input. While
this is intentional, to allow planners and stakeholders to test the impact
of varying levels of compact development, it means density is not
driven by internal mechanisms. Therefore, the model cannot be used to
determine how concentration of development in the city center affects
development at the periphery. Finally, relationships in the model are
governed by the best available literature, but, in many cases, such as
elasticities governing property values, uncertainty is high. In these
cases, sensitivity analyses of the key relationships help address this
problem by evaluating the impact of the uncertainty and providing a
range of results. Nonetheless, model results present the best available
estimate of magnitude and direction of change, but should not be
considered predictive.

There is a need for further research to disaggregate population
subgroups, such as by vehicle ownership and income brackets, to make
it possible to model household costs and displacement more accurately.
In addition, more localized and verified elasticities with respect to
property values and transportation costs would improve model accu-
racy and confidence. Finally, there is a need for research to determine
transferability of the model structure to other cases.

6. Conclusions

The D-O LRP SD model can help identify the mutually reinforcing
relationships between compact development and transit investments
and their socio-economic benefits and tradeoffs. Our results strongly
indicate that transit investment and compact development combine
synergistically to better achieve many of the goals of the LRT project,
including economic development, improved mobility, and compact,
mixed-use development. Nonetheless, the combined scenario does in-
crease housing costs the most, suggesting a need for an effort to address
affordability if both the light rail line and dense redevelopment are
pursued.

The D-O LRP SD model fills a gap in integrated modeling for urban
planning and provides an example of how spatially aggregated SD
models can complement current land use and transportation model
used in the urban planning process. Traditional models, while essential,
are very data- and time-intensive, and therefore make it more difficult
to connect land use and transportation decisions to economic, social, or
environmental endpoints, much less allow those impacts to feed back
and affect land use and transportation indicators, as occurs in this
model. Furthermore, while traditional methods of stakeholder

interaction tend to be more qualitative, our approach provides a
quantitative tool for planners to assess the social, economic, and en-
vironmental outcomes of a range of possible policy and demographic
scenarios. Feedbacks ensure that economic and social indicators are not
only outcomes, but also impact land use and transportation. Outputs for
each year of the model run allow users to calculate cumulative impacts
and assess nonlinear responses. Because the inputs and assumptions are
quickly and easily modified on the fly, the model can be used as a tool
for education and consensus-building with stakeholders and the public.
Finally, the model provides a prototype for how similar models could be
constructed to suit other cases around the world.
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