#model for source DWTP model { mu_10 ~ dnorm(-2.6,0.3) tau ~ dgamma(0.1,0.1) mu <- mu_10 *log(10) sigma <- 1/tau sigma_10 <- sigma/(log(10)*log(10)) for (i in 1:n) { u[i] ~ dlnorm(mu,tau) loss[i] ~ dbeta(50.75,5.25) inhib[i] ~ dbeta(5.17,1.48) u_liter[i] <- (u[i]*(1/v)*f*(1/(1-inhib[i]))*(1/(1-loss[i])))/pcr[i,13] p_1[i] <- 1-exp(-1*u[i]) p_0.2[i] <- 1-exp(-0.2*u[i]) p_0.1[i] <- 1-exp(-0.1*u[i]) p_0.04[i] <- 1-exp(-0.04*u[i]) p_0.03[i] <- 1-exp(-0.03125*u[i]) p_0.02[i] <- 1-exp(-0.02*u[i]) #likelihoods for Conc. pcr[i,1] ~ dbin(p_1[i],pcr[i,7]) pcr[i,2] ~ dbin(p_0.2[i],pcr[i,8]) pcr[i,3] ~ dbin(p_0.1[i],pcr[i,9]) pcr[i,4] ~ dbin(p_0.04[i],pcr[i,10]) pcr[i,5] ~ dbin(p_0.03[i],pcr[i,11]) pcr[i,6] ~ dbin(p_0.02[i],pcr[i,12]) } } list(pcr=structure(.Data=c( #3s oct 0,2,NA,NA,4,NA,2,2,5,5,5,5,207.7, 0,6,NA,3,NA,NA,2,7,5,5,5,5,207.7, 2,7,7,1,1,NA,2,7,10,5,5,5,207.7, 2,2,5,5,1,0,2,2,5,5,5,5,207.7, 0,3,0,NA,NA,NA,2,7,5,5,5,5,207.7, #4s oct 2,2,4,NA,NA,NA,2,2,5,5,5,5,200.2, 0,5,4,NA,NA,NA,2,7,5,5,5,5,200.2, 2,2,4,3,NA,NA,2,2,5,5,5,5,200.2, 0,7,5,4,NA,3,2,7,5,5,5,5,200.2, 0,4,NA,NA,NA,NA,2,7,5,5,5,5,200.2, #10s jan #corrected number of reps fm 12 to 7 2,1,NA,NA,NA,NA,7,7,5,5,5,5,57.1, #0,0,NA,NA,NA,NA,2,2,5,5,5,5,57.1, #0,0,NA,NA,NA,NA,2,2,5,5,5,5,57.1, #0,0,NA,NA,NA,NA,2,2,5,5,5,5,57.1, 0,1,NA,NA,NA,NA,2,7,5,5,5,5,57.1, #11s march 0,2,NA,NA,NA,NA,2,7,5,5,5,5,81.3, #0,0,NA,NA,NA,NA,2,2,5,5,5,5,81.3, 0,4,NA,NA,NA,NA,2,7,5,5,5,5,81.3, 0,2,NA,2,NA,NA,7,2,5,5,5,5,81.3, #0,0,NA,NA,NA,NA,2,2,5,5,5,5,81.3, #22S nov #0,0,NA,NA,NA,NA,2,2,5,5,5,5,144.4, #0,0,NA,NA,NA,NA,2,2,5,5,5,5,144.4, #0,0,NA,NA,NA,NA,2,2,5,5,5,5,144.4, 0,2,NA,NA,NA,NA,2,7,5,5,5,5,144.4, #0,0,NA,NA,NA,NA,2,2,5,5,5,5,144.4, #23S aug 1,4,NA,NA,NA,NA,2,7,5,5,5,5,200.0, #0,0,NA,NA,NA,NA,2,2,5,5,5,5,200.0, #0,0,NA,NA,NA,NA,2,2,5,5,5,5,200.0, #0,0,NA,NA,NA,NA,2,2,5,5,5,5,200.0, #0,0,NA,NA,NA,NA,2,2,5,5,5,5,200.0, #24s dec 2,0,NA,NA,NA,NA,7,2,5,5,5,5,1999.7, 0,2,NA,NA,NA,NA,7,7,5,5,5,5,1999.7, 2,0,NA,NA,NA,NA,7,2,5,5,5,5,1999.7, 0,1,NA,NA,NA,NA,2,7,5,5,5,5,1999.7, #0,0,NA,NA,NA,NA,2,2,5,5,5,5,1999.7, #25s oct 0,0,NA,1,NA,NA,2,2,5,5,5,5,88.5, #0,0,NA,NA,NA,NA,2,2,5,5,5,5,88.5, #0,0,NA,NA,NA,NA,2,2,5,5,5,5,88.5, #0,0,NA,NA,NA,NA,2,2,5,5,5,5,88.5, #0,0,NA,NA,NA,NA,2,2,5,5,5,5,88.5, #26s jan #0,0,NA,NA,NA,NA,2,2,5,5,5,5,206.5, 0,7,NA,9,4,3,2,7,5,10,5,5,206.5, #0,0,NA,NA,NA,NA,2,2,5,5,5,5,206.5, 0,3,NA,NA,NA,NA,2,7,5,5,5,5,206.5, 0,1,NA,0,NA,NA,2,7,5,5,5,5,206.5, #27s feb #0,0,NA,NA,NA,NA,2,2,5,5,5,5,200.0, #0,0,NA,NA,NA,NA,2,2,5,5,5,5,200.0, #0,0,NA,NA,NA,NA,2,2,5,5,5,5,200.0, 0,5,NA,3,NA,NA,2,5,5,5,5,5,200.0 #0,0,NA,NA,NA,NA,2,2,5,5,5,5,200.0, ), .Dim=c(26,13)),n=26,v=0.005,f=3) #model for treated DWTP model { mu_10 ~ dnorm(-2.6,0.3) tau ~ dgamma(0.1,0.1) mu <- mu_10 *log(10) sigma <- 1/tau sigma_10 <- sigma/(log(10)*log(10)) for (i in 1:n) { u[i] ~ dlnorm(mu,tau) inhib[i] ~ dbeta(18.88,8.81) loss[i] ~ dbeta(50.75,5.25) u_liter[i] <- (u[i]*(1/v)*f*(1/(1-inhib[i]))*(1/(1-loss[i])))/pcr[i,13] p_1[i] <- 1-exp(-1*u[i]) p_0.2[i] <- 1-exp(-0.2*u[i]) p_0.1[i] <- 1-exp(-0.1*u[i]) p_0.04[i] <- 1-exp(-0.04*u[i]) p_0.03[i] <- 1-exp(-0.03125*u[i]) p_0.02[i] <- 1-exp(-0.02*u[i]) #likelihoods for Conc. pcr[i,1] ~ dbin(p_1[i],pcr[i,7]) pcr[i,2] ~ dbin(p_0.2[i],pcr[i,8]) pcr[i,3] ~ dbin(p_0.1[i],pcr[i,9]) pcr[i,4] ~ dbin(p_0.04[i],pcr[i,10]) pcr[i,5] ~ dbin(p_0.03[i],pcr[i,11]) pcr[i,6] ~ dbin(p_0.02[i],pcr[i,12]) } } list(pcr=structure(.Data=c( #3t oct #0,0,NA,NA,NA,NA,2,2,5,5,5,5,2004.7, 0,3,NA,0,NA,NA,7,7,5,5,5,5,2004.7, #0,0,NA,NA,NA,NA,2,2,5,5,5,5,2004.7, #0,0,NA,NA,NA,NA,2,2,5,5,5,5,2004.7, #0,0,NA,NA,NA,NA,2,2,5,5,5,5,2004.7, #20t jan #0,0,NA,NA,NA,NA,2,2,5,5,5,5,2003.7, #0,0,NA,NA,NA,NA,2,2,5,5,5,5,2003.7, 1,0,NA,NA,NA,NA,7,2,5,5,5,5,2003.7, #0,0,NA,NA,NA,NA,2,2,5,5,5,5,2003.7, #0,0,NA,NA,NA,NA,2,2,5,5,5,5,2003.7, #23t aug 2,2,1,NA,NA,NA,2,2,5,5,5,5,2000.0, #0,0,NA,NA,NA,NA,2,2,5,5,5,5,2000.0, #0,0,NA,NA,NA,NA,2,2,5,5,5,5,2000.0, #0,0,NA,NA,NA,NA,2,2,5,5,5,5,2000.0, #0,0,NA,NA,NA,NA,2,2,5,5,5,5,2000.0, #25t oct 5,1,NA,NA,NA,NA,7,7,5,5,5,5,673.5, 2,0,NA,NA,NA,NA,7,7,5,5,5,5,673.5, 1,4,1,NA,NA,NA,2,7,5,5,5,5,673.5, 2,3,1,NA,NA,NA,2,7,5,5,5,5,673.5 #0,0,NA,NA,NA,NA,2,2,5,5,5,5,673.5 ), #accounts for per ml(ie, v) and fraction of org floc used (ie f) .Dim=c(7,13)),n=7,v=0.005,f=3)