ENANTIOMER-SPECIFIC MEASUREMENTS OF CURRENT-USE PESTICIDES IN AQUATIC SYSTEMS

- 3 Elin M. Ulrich, † Patti L. TenBrook, ‡ Larry M. McMillan, § Qianheng Wang, Wenjian Lao#
- 4 [†]National Exposure Research Laboratory, U.S. Environmental Protection Agency, Research
- 5 Triangle Park, North Carolina, USA
- 6 ‡Region 9, U.S. Environmental Protection Agency, San Francisco, California, USA
- 7 §National Caucus and Center on Black Aged, Durham, North Carolina, USA
- 8 Student Contractor, U.S. Environmental Protection Agency, Research Triangle Park, North
- 9 Carolina, USA
- 10 #Southern California Coastal Water Research Project, Costa Mesa, California, USA
- 11
- 12 **Table S1.** EF values, sample description, and sampling date for river-, storm-, and waste- water
- 13 samples contributed by Caltest

Sample	Description	Date	Fipronil	Bifenthrin	cis-Permethrin
		(2013)	EF	EF	EF
	Racemic standards		0.453– 0.513	0.479– 0.504	0.498–0.518
1.	American River, Sacramento CA	5/1	NM ^a	NF ^b	NF
2.	American River, Sacramento CA	5/1	0.478	NF	NF

Sample	Description	Date (2013)	Fipronil EF	Bifenthrin EF	<i>cis</i> -Permethrin EF
3.	American River, Sacramento CA	5/1	0.501	NF	NF
4.	American River, Sacramento CA	5/1	0.490	NF	NF
5.	American River, Sacramento CA	5/7	0.511	NF	NM
6.	Freshwater, S California	5/21	0.495	NF	NF
7.	Freshwater, S California	5/21	NM	0.489	NF
8.	Freshwater, S California	5/21	0.493	0.494	NM
9.	Matrix Spike		NM	0.500	NM
10.	Matrix Spike		0.480	0.492	NM
11.	Matrix Spike		0.489	0.492	NM
12.	Matrix Spike		NM	0.491	0.494 ^c
13.	Matrix Spike		0.480	0.502	NF
14.	Matrix Spike		0.487	0.496	NM
15.	Matrix Spike		0.464	0.513	NF
16.	Matrix Spike		0.452	0.521	NF
17.	POTW Effluent, N California	5/20	0.523	NF	NF
18.	POTW Effluent, N California	5/20	0.481	NF	NF
19.	POTW Effluent, N California	5/20	NM	NF	NF
20.	Seawater	5/21	NM	NF	NF
21.	Seawater	5/21	NM	0.494	0.494
22.	Seawater	5/21	NM	NF	NF
23.	Seawater	5/21	NM	0.489	NF
24.	Seawater	5/21	0.495	0.486	NF
25.	Seawater	5/21	NM	0.494	0.486
26.	Seawater	5/21	NM	0.494	0.496

Sample	Description	Date (2013)	Fipronil EF	Bifenthrin EF	<i>cis</i> -Permethrin EF
27.	Seawater	5/21	NM	0.493	NM
28.	Seawater	5/21	0.512	0.491	0.490
29.	Seawater	5/21	NM	0.492	0.500
30.	Seawater	5/21	NM	NF	0.499
31.	Seawater	5/21	NM	0.491	0.484
32.	Seawater	5/21	0.490	0.489	0.500
33.	Stormwater S California ^d	5/1	0.482	NF	NF
34.	Stormwater S California	5/1	0.493	NF	NF
35.	Stormwater S California	5/1	0.497	NF	NF
36.	Stormwater S California	5/1	NM	NF	NF
37.	Stormwater/Urban N California	5/1	NM	NF	NF
38.	Stormwater/Urban N California	5/1	0.486	NF	NF
39.	Stormwater/Urban N California	5/1	NM	NF	NF
40.	Stormwater/Urban N California	5/1	0.470	NF	NF
41.	Stormwater/Urban N California	5/1	NM	NF	NF
42.	Stormwater/Urban N California	5/1	0.498	NF	NF
43.	Stormwater/Urban N California	5/1	0.498	NF	NF
44.	Unknown	5/1	0.492	NF	NF
45.	Unknown	5/1	0.496	NF	NF

^aNM = EF not measured; peaks detected but QC checks did not pass so data cannot be used.

15 ^bNF = Not found; no peaks detected during enantioselective analysis.

^cValues in bold are non-racemic based on the range of EFs measured for racemic standards. 16

^dAll Stormwater and Stormwater/Urban were collected under dry weather conditions. 17

19 **Table S2.** Sampling date, sampling station ID, pesticide concentration, pesticide EF (italicized),

20 and toxicity results for urban estuary sediment contributed by Southern California Coastal Water

21 Research Project

Sample	Date	Station	Fipronil Conc (ng/g dry wt) EF	Bifenthrin Conc (ng/g dry wt) EF	<i>cis</i> -Permethrin Conc (ng/g dry wt) EF	<i>E.</i> <i>estuarius</i> % survival
Racemic standards			0.450-0.592	0.481-0.506	0.498-0.525	
1.	Oct 2007	1	ND ^a	3.05	3.94	89
			NM ^b	NM	NF^{c}	
2.	Oct 2007	2	ND	26.6	31.8	3
			NM	NF	NM	
3.	Oct 2007	3	ND	79.6	100	0
			NF	NF	NM	
4.	Oct 2007	4	ND	3.64	3.92	16
			NM	NF	NF	
5.	Oct 2007	4	ND	3.64	3.92	
			0.537	NF	NF	
6.	Oct 2007	4	ND	3.64	3.92	
			NM	NF	NF	
7.	Oct 2007	5	ND	4.57	5.33	18
			0.507	NF	0.562 ^d	
8.	Oct 2007	6	ND	3.16	2.86	8
			0.506	0.508	0.500	
9.	June 2008	Blank	_e	_	_	
			0.495	NF	NF	

Sample	Date	Station	Fipronil Conc (ng/g dry wt) EF	Bifenthrin Conc (ng/g dry wt) EF	<i>cis</i> -Permethrin Conc (ng/g dry wt) EF	<i>E.</i> <i>estuarius</i> % survival
10.	June 2008	1	ND	8.3	16.7	72
			NM	NF	NF	
11.	June 2008	1	ND	8.3	16.7	
			0.492	NM	NF	
12.	June 2008	2	0.7	24.6	50.6	41
			0.495	NM	NF	
13.	June 2008	3	ND	5.1	17.1	57
			NM	NF	NM	
14.	June 2008	4	0.1	2.8	6.6	89
			NM	NF	NF	
15.	June 2008	5	1.1	67.6	92.1	0
			0.504	NF	0.516	
16.	June 2008	6	0.2	6.6	11.5	49
			0.490	0.503	0.532	
17.	Oct 2008	Blank	_	-	-	
			NM	NF	NF	
18.	Oct 2008	1	ND	17.9	43.6	
			NM	NF	NF	
19.	Oct 2008	1	ND	17.9	43.6	
			NM	NF	NF	
20.	Oct 2008	2	ND	6.99	15.4	78
			0.500	NF	NF	

Sample	Date	Station	Fipronil Conc (ng/g dry wt) EF	Bifenthrin Conc (ng/g dry wt) EF	<i>cis</i> -Permethrin Conc (ng/g dry wt) EF	E. estuarius % survival
21.	Oct 2008	2	ND	6.99	15.4	
			0.471	NF	NF	
22.	Oct 2008	3	ND	34	99.4	
			0.490	NF	NM	
23.	Oct 2008	4	ND	4.37	7.05	
			NM	NF	NF	
24.	Oct 2008	5	ND	13.5	23	88
			NM	NM	NF	
25.	Oct 2008	5	ND	15.5	23	
			0.514	NF	NM	
26.	Oct 2008	6	ND	3.08	6.12	
			0.485	0.526	NF	
27.	Aug 2009	Blank	_	_	_	
			NM	NF	NF	
28.	Aug 2009	1	ND	1.79	ND	
			NM	NF	NF	
29.	Aug 2009	2	ND	15.3	21.4	
			0.500	NF	NM	
30.	Aug 2009	3	0.118	19.4	23.2	
			0.529	NF	0.506	
31.	Aug 2009	4	0.069	3.84	6.24	
			0.516	NF	NM	

Sample	Date	Station	Fipronil Conc (ng/g dry wt) EF	Bifenthrin Conc (ng/g dry wt) EF	<i>cis</i> -Permethrin Conc (ng/g dry wt) EF	<i>E.</i> <i>estuarius</i> % survival
32.	Aug 2009	5	0.144	2	2.56	
			NM	NF	NM	
33.	Aug 2009	6	0.434	5.83	13.7	
			0.463	0.526	NF	
34.	Nov 2009	Blank	_	_	_	
			0.507	NF	NF	
35.	Nov 2009	1	0.798	25.3	61.5	5
			NF	NM	NF	
36.	Nov 2009	2	0.422	14.3	24	12
			0.499	NF	NF	
37.	Nov 2009	2	0.422	14.3	24	
			0.513	NF	NM	
38.	Nov 2009	3	0.082	4.16	5.27	23
			0.484	NF	0.460	
39.	Nov 2009	5	0.036	0.684	1.52	37
			0.474	0.499	NF	
40.	Dec 2009	Blank	-	-	-	
			0.495	NF	NF	
41.	Dec 2009	1	0.43	8.36	17.6	15
			0.475	NM	NF	
42.	Dec 2009	1	0.43	8.36	17.6	
			0.472	NF	NF	

Sample	Date	Station	Fipronil	Bifenthrin	cis-Permethrin	Е.
			Conc (ng/g	Conc (ng/g	Conc (ng/g dry	estuarius
			dry wt)	dry wt)	wt)	% survival
			EF	EF	EF	
43.	Dec 2009	2	0.613	11.6	16.8	20
			0.500	NF	NM	
	D	2	0.040	2.11	(12)	
44.	Dec 2009	3	0.349	3.41	6.12	24
			0.560	NF	NF	
			0.300	1 N <i>I</i> ^r	1 N <i>F</i>	
45.	Dec 2009	5	0.227	0.592	0.665	8
			NM	NF	NM	

^aND = concentration below detection limit (varies).

^bNM = EF not measured; peaks detected but QC checks did not pass so data cannot be used.

^cNF = Not found; no peaks detected during enantioselective analysis.

²⁵ ^dValues in bold are non-racemic based on the range of EFs measured for racemic standards.

²⁶ ^eConcentrations were not reported for blanks.

27

28 Table S3. Time of sample collection, formulation, and pesticide EF for runoff samples from

29 concrete treated with bifenthrin and permethrin contributed by UC Riverside

Sample	Day	Formulation ^a	Fipronil EF	Bifenthrin EF	cis-Permethrin EF
Racemic standards			0.351 -0.540 ^b	0.457-0.500	0.477-0.518
1.	1	S	0.484	0.499	NF ^c
2.	1	S	NF	0.478	0.490
3.	1	S	NM ^d	0.496	NF
4.	1	S	NF	0.483	0.496
5.	7	L	0.480	0.478	0.094 ^e
6.	7	L	NF	NF	0.122

Sample	Day	Formulation ^a	Fipronil EF	Bifenthrin EF	cis-Permethrin EF
7.	7	L	NF	0.482	0.175
8.	7	L	NF	NF	0.205
9.	7	Р	0.399	0.452	0.454
10.	7	Р	0.435	0.459	0.445
11.	7	Р	NF	0.487	0.487
12.	7	Р	NF	NF	0.496
13.	7	Р	0.421	NM	0.494
14.	7	Р	NF	NF	0.492
15.	7	Р	0.424	0.353	0.498
16.	7	Р	NF	NF	0.495
17.	7	S	0.477	0.476	0.431
18.	7	S	NF	0.507	0.425
19.	7	S	NF	NF	NM
20.	7	S	NF	NM	0.493
21.	20	L	NF	NF	NM
22.	20	L	NF	NF	0.391
23.	20	Р	NF	NF	0.502
24.	20	Р	NF	NF	NM
25.	20	Р	0.480	NF	NM
26.	20	Р	0.473	0.473	0.502
27.	20	Р	NF	NF	0.501
28.	20	Р	NF	NF	0.491

 ^{a}L = ready-to-use liquid, P = professional concentrate, S = ready-to-use solid.

 $\frac{b}{32} = \frac{b}{b} \frac{b}{b} \frac{b}{b} \frac{b}{b} \frac{b}{b} \frac{b}{b} \frac{b}{b} \frac{b}{c} \frac$

34	standard was measured at 0.351 at the end of the sequence (the other two measurements were
35	typical). Samples and standards measured just before or after these unusually low EFs were not
36	remarkable, nor did they indicate carryover. While surprising and inexplicable, these low EFs
37	for racemic standards met all QA/QC criteria, and thus were not removed from the data set as
38	we feel they correctly reflect variability in our measurements.
39	^c NF = Not found; no peaks detected during enantioselective analysis.
40	^d NM = EF not measured; peaks detected but QC checks did not pass so data cannot be used.
41	^e Values in bold are non-racemic based on the range of EFs measured for racemic standards.
42	
43	
44	

45 **Table S4.** Time of sample collection, health status, length, weight, tissue concentration, and EF of

46 bifenthrin for salmon uptake samples dosed with 0.2 µg/L bifenthrin in water contributed by U.S.

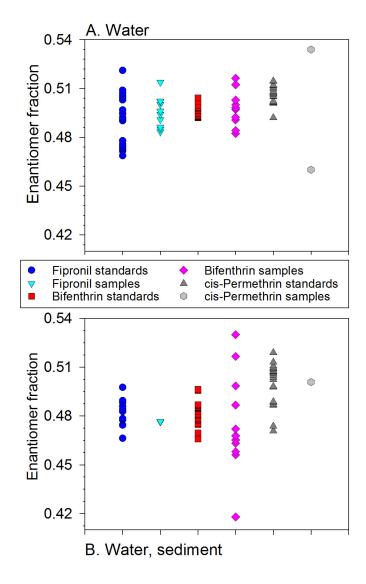
47 Geological Survey

Sample	Day since dose	Status ^a	Length (mm)	Weight (g)	Tissue Conc (ng/g)	Bifenthrin EF
Racemic standards						0.465-0.521
1.	1	А	70	3.949	428	0.451 ^b
2.	1	А	66	3.227	478	0.449
3.	1	А	65	3.203	552	0.440
4.	1	А	65	2.862	449	0.401
5.	1	А	68	3.626	465	0.460
6.	1	А	64	2.770	408	0.458
7.	2	D	70	3.235	2062	0.526
8.	2	D	69	3.283	1850	0.447
9.	2	D	63	2.626	1684	0.399

Sample	Day since dose	Status ^a	Length (mm)	Weight (g)	Tissue Conc (ng/g)	Bifenthrin EF
10.	2	D	70	3.394	1341	0.417
11.	2	А	72	3.286	1216	0.441
12.	2	А	74	3.832	1474	0.466
13.	2	А	69	2.981	1922	0.428
14.	3	А	_ ^c	3.863	1377	0.411
15.	3	А	65	3.413	1452	0.409
16.	3	D	74	4.896	1115	0.392
17.	3	D	62	2.293	1731	0.454
18.	3	D	60	2.654	1614	0.399
19.	3	D	62	3.208	1373	0.441
20.	3	D	62	2.914	1921	0.378
21.	3	D	70	4.530	1109	0.440
22.	3	D	62	3.379	1186	0.466
23.	3	D	61	2.953	1455	0.384

^aA = Alive; D = Dead.

49 ^bValues in bold are non-racemic based on the range of EFs measured for racemic standards.


^cReported fish length believed to be in error, therefore removed.

51

52 Additional samples

53 No additional sample information was available for the California Department of Pesticide 54 Regulation (CDPR) surface water samples (Figure SI S2A and Table S5), however it is interesting 55 to note that of 12 bifenthrin EFs, 6 were less than and 3 were greater than the EF for racemic 56 standards, making 9 of 12 samples non-racemic. It would have been interesting to investigate if the EFs above/below racemic standards came from similar or different sample locations, sampling
dates, or other water conditions, but this was not possible without further information.

No additional sample information was available for the California Department of Fish and Wildlife (CDFW) water and sediment samples (Figure SI S2B and Table S6). Half (5 of 10) of the bifenthrin EFs and both of the permethrin EFs (2 of 2) were non-racemic. It would have been interesting to explore whether EF values in the sediment and water were similar at a given location, or if enantioselective processes were occurring solely in one of the matrices, but this was not possible without further information. Overall, the CDRP and CDFW samples showed similar trends as other environmental samples reported here.

66

Figure S2. Enantiomer fractions measured in racemic standards and samples donated from two organizations. Panel A shows surface water samples donated by California Department of Pesticide Regulation; Panel B shows surface water and urban sediment samples donated by the California Department of Fish and Wildlife. Details for these standards and samples are listed in Supplemental Tables 5-6.

Sample	Fipronil EF	Bifenthrin EF	cis-Permethrin EF	
Racemic standards	0.466–0.498	0.466–0.496	0.471-0.519	
1.	NF ^a	NF	NM ^b	
2.	NF	0.499 ^c	NF	
3.	0.477	0.465	NF	
4.	NF	0.468	NF	
5.	NF	NM	NF	
6.	NF	NM	NF	
7.	0.476	0.487	NF	
8.	NF	0.463	NF	
9.	NF	NM	NF	
10.	NF	NM	NF	
11.	NF	NM	NM	
12.	NF	NM	NM	
13.	NF	NF	NF	
14.	NF	NF	NF	
15.	NF	NM	NF	
16.	NF	NF	NF	
17.	NF	NF	NF	
18.	NF	NF	0.501	
19.	NF	NM	NF	
20.	NF	NM	NF	
21.	NF	0.465	NF	

Table S5. EF values for surface water samples contributed by the California Department of

74 Pesticide Regulation. No additional sample details were available.

Sample	Fipronil EF	Bifenthrin EF	cis-Permethrin EF
22.	NF	NM	NF
23.	NF	0.472	NM
24.	NF	NF	NF
25.	NF	0.456	NM
26.	NF	0.458	NF
27.	NF	NM	NM
28.	NF	0.530	NF
29.	NF	NM	NF
30.	NF	NM	NF
31.	NF	NM	NF
32.	NF	0.418	NF
33.	NF	NM	NF
34.	NF	NM	NF
35.	NF	NF	NF
36.	NF	0.517	NF

^aNF = Not found; no peaks detected during enantioselective analysis.

^bNM = EF not measured; peaks detected but QC checks did not pass so data cannot be used. 76

^cValues in bold are non-racemic based on the range of EFs measured for racemic standards. 77

78

Table S6. EF values for surface water and urban sediment samples contributed by the California 79

Department of Fish and Wildlife. No additional sample details were available 80

Sample	Fipronil EF	Bifenthrin EF	cis-Permethrin EF
Racemic standards	0.469–0.521	0.492–0.504	0.492–0.515
1.	0.502	0.491 ^a	0.534

Sample	Fipronil EF	Bifenthrin EF	cis-Permethrin EF
2.	NM ^a	NM	NF ^b
3.	NM	NM	NF
4.	0.486	0.484	NF
5.	0.514	0.492	NF
6.	NM	NM	NF
7.	0.491	0.482	NF
8.	NM	0.516	NF
9.	0.485	0.498	NF
10.	0.494	0.497	0.460
11.	0.483	0.500	NF
12.	NM	NM	NF
13.	0.500	0.512	NF
14.	0.502	NM	NF
15.	0.496	0.503	NF

^aValues in bold are non-racemic based on the range of EFs measured for racemic standards.

82 ^bNM = EF not measured; peaks detected but QC checks did not pass so data cannot be used.

83 ^cNF = Not found; no peaks detected during enantioselective analysis.

84

85 Discussion of enantiomer assignment reversal from Table 1.

86 The assignment of absolute structure and light rotation is an important but difficult task for 87 chiral compounds. For a number of reasons, it appears that the assignment of (+) and (-) bifenthrin 88 has been reversed in reference [1]. The first indication that there might be an issue was that the 89 more toxic enantiomer for *Daphnia pulex* reported in reference [1] is opposite that reported for 90 similar species by other researchers [2–4]. One study determined that the toxicity of an enantiopure 91 1R-cis bifenthrin obtained from FMC Corporation was the only enantiomer contributing toxicity 92 to a racemic mixture for *Ceriodaphnia dubia* [2]. The 1R-*cis* bifenthrin is identified as the (+)
93 enantiomer in reference [3].

94 Further investigation revealed the elution order for bifenthrin on a Sumichiral OA-2500I 95 HPLC column with a mobile phase of > 99% hexane with small amounts of various modifiers is 96 reversed between references [1] and [3]. It is expected that the elution order with such similar 97 conditions would be the same. The elution order reported in reference [3] on a BGB-172 GC 98 column determined using an enantiopure 1R-cis-bifenthrin standard provided by FMC Corporation 99 matches the elution order of this study. The method for determining the assignment of (+) and (-) 100 in reference [3] was by laser polarimeter at 675 nm, in full agreement with polarimetry (wavelength 101 unknown) for single enantiomers prepared by Chirosolve used in this study. Reference [1] used 102 specific rotation at 365 nm to assign the enantiomers, which lead to the disagreement of enantiomer 103 assignment.

The authors were unable to locate errata for the article in question, but determined it was more scientifically justified given the evidence to not perpetuate the error. Therefore we have reversed the assignment of (+) and (-) bifenthrin from reference [1] for Table 1 of this manuscript.

108 REFERENCES

Liu TL, Wang YS, Yen JH. 2005. Separation of bifenthrin enantiomers by chiral HPLC
 and determination of their toxicity to aquatic organism. *J. Food Drug Anal.* 13(4):357–360.

Liu W, Gan J, Lee S, Werner I. 2005. Isomer selectivity in aquatic toxicity and
biodegradation of bifenthrin and permethrin. *Environ. Toxicol. Chem.* 24(8):1861–1866.

113 3. Liu WP, Gan JY, Schlenk D, Jury WA. 2005. Enantioselectivity in environmental safety
114 of current chiral insecticides. *Proc. Natl. Acad. Sci. U. S. A.* 102(3):701–706.

- 115 4. Liu W, Gan JJ, Qin S. 2005. Separation and aquatic toxicity of enantiomers of synthetic
- 116 pyrethroid insecticides. *Chirality* 17(S1):S127–S133.